diff --git a/docs/_static/docs-dataframe-default-setting.png b/docs/_static/docs-dataframe-default-setting.png
new file mode 100644
index 00000000000..2feb2acd64c
Binary files /dev/null and b/docs/_static/docs-dataframe-default-setting.png differ
diff --git a/docs/guides/working_with_data/dataframes.md b/docs/guides/working_with_data/dataframes.md
index 9e24a59310a..358ba73a860 100644
--- a/docs/guides/working_with_data/dataframes.md
+++ b/docs/guides/working_with_data/dataframes.md
@@ -320,6 +320,7 @@ dataframe_.
+
/// tab | pandas
```python
@@ -339,6 +340,7 @@ table.value
///
+
/// tab | polars
```python
@@ -382,7 +384,10 @@ def __():
///
-## Dataframe panels
+///
+
+
+## Dataframe panels {#dataframe-panels}
Dataframe outputs in marimo come with several panels to help you visualize, explore, and page through your data interactively. These panels are accessible via toggles at the bottom-left of a dataframe output. If you need further control, after opening a panel you can
@@ -393,7 +398,7 @@ Dataframe outputs in marimo come with several panels to help you visualize, expl
Toggles are visible when editing notebooks (with `marimo edit ...`) but not when running notebooks as apps (with `marimo run ...`), except for the row viewer which is available in both.
-### Row viewer panel
+### Row viewer panel {#row-viewer-panel}
@@ -408,7 +413,7 @@ To inspect individual rows, open the **row viewer**. This presents a vertical vi
- **Use arrow keys** (`←` `→`) to navigate between rows
- **Click** on any row in the dataframe to view its data in the panel
-### Column explorer panel
+### Column explorer panel {#column-explorer-panel}
@@ -427,12 +432,30 @@ import altair
altair.data_transformers.enable("vegafusion")
```
-### Chart builder
+### Chart builder {#chart-builder}
The chart builder toggle lets you rapidly develop charts using a GUI, while also generating Python code to insert in your notebook. Refer to the [chart builder guide](plotting.md#chart-builder) for more details.
+## Preferences {#preferences}
+
+When you run a SQL cell in marimo, you can get the output returned as a dataframe. If you have a preference for a specific dataframe library as a default you can configure the "default SQL output" in the user settings by going to the "Runtime" tab.
+
+
+
+
+
+Configure the default SQL output
+
+
+
+Alternatively you can also use the [marimo configuration file](/guides/configuration/#user-configuration) to configure the default SQL output.
+
+```toml
+[runtime]
+default_sql_output = "native"
+```
-## Example notebook
+## Example notebook {#example-notebook}
For a comprehensive example of using Polars with marimo, check out our [Polars example notebook](https://github.com/marimo-team/marimo/blob/main/examples/third_party/polars/polars_example.py).