|
| 1 | +import * as z from "zod"; |
| 2 | +import { createAgent, HumanMessage, AIMessage, tool } from "langchain"; |
| 3 | +import { bigToolMiddleware } from "langchain/middleware"; |
| 4 | +import { ChatAnthropic } from "@langchain/anthropic"; |
| 5 | + |
| 6 | +/** |
| 7 | + * Capture the raw requests to verify the tools are being selected correctly |
| 8 | + */ |
| 9 | +const requestBodies: any[] = []; |
| 10 | +const llm = new ChatAnthropic({ |
| 11 | + apiKey: process.env.ANTHROPIC_API_KEY, |
| 12 | + model: "claude-sonnet-4-20250514", |
| 13 | + clientOptions: { |
| 14 | + fetch: (url, options) => { |
| 15 | + requestBodies.push(JSON.parse(options?.body as string)); |
| 16 | + return fetch(url, options); |
| 17 | + }, |
| 18 | + }, |
| 19 | +}); |
| 20 | + |
| 21 | +// Example usage |
| 22 | +const agent = createAgent({ |
| 23 | + llm, |
| 24 | + tools: [ |
| 25 | + tool( |
| 26 | + ({ a, b, operation }: { a: number; b: number; operation: string }) => { |
| 27 | + if (operation === "add") { |
| 28 | + return a + b; |
| 29 | + } else if (operation === "multiply") { |
| 30 | + return a * b; |
| 31 | + } else if (operation === "subtract") { |
| 32 | + return a - b; |
| 33 | + } else if (operation === "divide") { |
| 34 | + return a / b; |
| 35 | + } else { |
| 36 | + return "Unknown operation"; |
| 37 | + } |
| 38 | + }, |
| 39 | + { |
| 40 | + name: "calculator", |
| 41 | + description: "Perform basic math operations", |
| 42 | + schema: z.object({ |
| 43 | + a: z.number(), |
| 44 | + b: z.number(), |
| 45 | + operation: z.enum(["add", "multiply", "subtract", "divide"]), |
| 46 | + }), |
| 47 | + } |
| 48 | + ), |
| 49 | + tool( |
| 50 | + () => { |
| 51 | + return "Database query result: 42"; |
| 52 | + }, |
| 53 | + { |
| 54 | + name: "database", |
| 55 | + description: "Query a database", |
| 56 | + schema: z.object({ |
| 57 | + query: z.string(), |
| 58 | + }), |
| 59 | + } |
| 60 | + ), |
| 61 | + ], |
| 62 | + middleware: [ |
| 63 | + bigToolMiddleware({ |
| 64 | + strategy: "custom", |
| 65 | + customSelector: (tools, query) => { |
| 66 | + if (query.includes("calculator")) { |
| 67 | + return tools.filter((tool) => tool.name === "calculator"); |
| 68 | + } else if (query.includes("database")) { |
| 69 | + return tools.filter((tool) => tool.name === "database"); |
| 70 | + } |
| 71 | + |
| 72 | + return []; |
| 73 | + }, |
| 74 | + maxTools: 1, |
| 75 | + }), |
| 76 | + ] as const, |
| 77 | +}); |
| 78 | + |
| 79 | +// Usage example with a long chat history for testing caching |
| 80 | +const result = await agent.invoke({ |
| 81 | + messages: [new HumanMessage("Calculate 10 + 20")], |
| 82 | +}); |
| 83 | +console.log( |
| 84 | + "Calculate 10 + 20\nAgent response:", |
| 85 | + result.messages.at(-1)?.content, |
| 86 | + `\nAll available tools: ${requestBodies |
| 87 | + .pop() |
| 88 | + .tools.map((tool: { name: string }) => tool.name)}` |
| 89 | +); |
| 90 | + |
| 91 | +const result2 = await agent.invoke({ |
| 92 | + messages: [new HumanMessage("Query the database for 42")], |
| 93 | +}); |
| 94 | +console.log( |
| 95 | + "\nQuery the database for 42\nAgent response:", |
| 96 | + result2.messages.at(-1)?.content, |
| 97 | + `\nAll available tools: ${requestBodies |
| 98 | + .pop() |
| 99 | + .tools.map((tool: { name: string }) => tool.name)}` |
| 100 | +); |
0 commit comments