@@ -401,7 +401,8 @@ class AstraDBVectorStore(VectorStore):
401401 Setup:
402402 Install the ``langchain-astradb`` package and head to the
403403 `AstraDB website <https://astra.datastax.com>`_, create an account, create a
404- new database and `create an application token <https://docs.datastax.com/en/astra-db-serverless/administration/manage-application-tokens.html>`_.
404+ new database and
405+ `create an application token <https://docs.datastax.com/en/astra-db-serverless/administration/manage-application-tokens.html>`_.
405406
406407 .. code-block:: bash
407408
@@ -424,7 +425,8 @@ class AstraDBVectorStore(VectorStore):
424425 Instantiate:
425426 Get your API endpoint and application token from the dashboard of your database.
426427
427- Create a vector store and provide a LangChain embedding object for working with it:
428+ Create a vector store and provide a LangChain embedding object for working with
429+ it:
428430
429431 .. code-block:: python
430432
@@ -434,7 +436,9 @@ class AstraDBVectorStore(VectorStore):
434436 from langchain_openai import OpenAIEmbeddings
435437
436438 ASTRA_DB_API_ENDPOINT = getpass.getpass("ASTRA_DB_API_ENDPOINT = ")
437- ASTRA_DB_APPLICATION_TOKEN = getpass.getpass("ASTRA_DB_APPLICATION_TOKEN = ")
439+ ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(
440+ "ASTRA_DB_APPLICATION_TOKEN = "
441+ )
438442
439443 vector_store = AstraDBVectorStore(
440444 collection_name="astra_vector_langchain",
@@ -443,8 +447,10 @@ class AstraDBVectorStore(VectorStore):
443447 token=ASTRA_DB_APPLICATION_TOKEN,
444448 )
445449
446- (Vectorize) Create a vector store where the embedding vector computation happens entirely
447- on the server-side, using the `vectorize <https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html>`_ feature:
450+ (Vectorize) Create a vector store where the embedding vector computation
451+ happens entirely on the server-side, using the
452+ `vectorize <https://docs.datastax.com/en/astra-db-serverless/databases/embedding-generation.html>`_
453+ feature:
448454
449455 .. code-block:: python
450456
@@ -454,7 +460,9 @@ class AstraDBVectorStore(VectorStore):
454460 from langchain_astradb import AstraDBVectorStore
455461
456462 ASTRA_DB_API_ENDPOINT = getpass.getpass("ASTRA_DB_API_ENDPOINT = ")
457- ASTRA_DB_APPLICATION_TOKEN = getpass.getpass("ASTRA_DB_APPLICATION_TOKEN = ")
463+ ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(
464+ "ASTRA_DB_APPLICATION_TOKEN = "
465+ )
458466
459467 vector_store = AstraDBVectorStore(
460468 collection_name="astra_vectorize_langchain",
@@ -485,14 +493,18 @@ class AstraDBVectorStore(VectorStore):
485493 from langchain_astradb import AstraDBVectorStore
486494
487495 ASTRA_DB_API_ENDPOINT = getpass.getpass("ASTRA_DB_API_ENDPOINT = ")
488- ASTRA_DB_APPLICATION_TOKEN = getpass.getpass("ASTRA_DB_APPLICATION_TOKEN = ")
496+ ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(
497+ "ASTRA_DB_APPLICATION_TOKEN = "
498+ )
489499
490500 vector_store = AstraDBVectorStore(
491501 collection_name="astra_vectorize_langchain",
492502 # embedding=..., # needed unless using 'vectorize'
493503 api_endpoint=ASTRA_DB_API_ENDPOINT,
494504 token=ASTRA_DB_APPLICATION_TOKEN,
495- collection_vector_service_options=VectorServiceOptions(...), # see above
505+ collection_vector_service_options=VectorServiceOptions(
506+ ...
507+ ), # see above
496508 collection_lexical=CollectionLexicalOptions(analyzer="standard"),
497509 collection_rerank=CollectionRerankOptions(
498510 service=RerankServiceOptions(
@@ -509,11 +521,13 @@ class AstraDBVectorStore(VectorStore):
509521 the options to resolve are:
510522 (1) use autodetect mode, (2) switch to ``setup_mode`` "OFF", or
511523 (3) explicitly specify lexical and/or rerank settings in the vector
512- store constructor, to match the existing collection configuration.
513- See `here <https://github.com/langchain-ai/langchain-datastax/blob/main/libs/astradb/README.md#collection-defaults-mismatch>`_ for more details.
524+ store constructor, to match the existing collection configuration. See
525+ `here <https://github.com/langchain-ai/langchain-datastax/blob/main/libs/astradb/README.md#collection-defaults-mismatch>`_
526+ for more details.
514527
515- (Autodetect) Let the vector store figure out the configuration (including vectorize
516- and document encoding scheme on DB), by inspection of an existing collection:
528+ (Autodetect) Let the vector store figure out the configuration (including
529+ vectorize and document encoding scheme on DB), by inspection of an existing
530+ collection:
517531
518532 .. code-block:: python
519533
@@ -522,7 +536,9 @@ class AstraDBVectorStore(VectorStore):
522536 from langchain_astradb import AstraDBVectorStore
523537
524538 ASTRA_DB_API_ENDPOINT = getpass.getpass("ASTRA_DB_API_ENDPOINT = ")
525- ASTRA_DB_APPLICATION_TOKEN = getpass.getpass("ASTRA_DB_APPLICATION_TOKEN = ")
539+ ASTRA_DB_APPLICATION_TOKEN = getpass.getpass(
540+ "ASTRA_DB_APPLICATION_TOKEN = "
541+ )
526542
527543 vector_store = AstraDBVectorStore(
528544 collection_name="astra_existing_collection",
@@ -575,7 +591,7 @@ class AstraDBVectorStore(VectorStore):
575591 Search:
576592 .. code-block:: python
577593
578- results = vector_store.similarity_search(query="thud",k=1)
594+ results = vector_store.similarity_search(query="thud", k=1)
579595 for doc in results:
580596 print(f"* {doc.page_content} [{doc.metadata}]")
581597
@@ -586,7 +602,9 @@ class AstraDBVectorStore(VectorStore):
586602 Search with filter:
587603 .. code-block:: python
588604
589- results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
605+ results = vector_store.similarity_search(
606+ query="thud", k=1, filter={"bar": "baz"}
607+ )
590608 for doc in results:
591609 print(f"* {doc.page_content} [{doc.metadata}]")
592610
@@ -597,7 +615,7 @@ class AstraDBVectorStore(VectorStore):
597615 Search with score:
598616 .. code-block:: python
599617
600- results = vector_store.similarity_search_with_score(query="qux",k=1)
618+ results = vector_store.similarity_search_with_score(query="qux", k=1)
601619 for doc, score in results:
602620 print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
603621
@@ -615,11 +633,11 @@ class AstraDBVectorStore(VectorStore):
615633 await vector_store.adelete(ids=["3"])
616634
617635 # search
618- results = vector_store.asimilarity_search(query="thud",k=1)
636+ results = vector_store.asimilarity_search(query="thud", k=1)
619637
620638 # search with score
621- results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
622- for doc,score in results:
639+ results = await vector_store.asimilarity_search_with_score(query="qux", k=1)
640+ for doc, score in results:
623641 print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
624642
625643 .. code-block:: none
@@ -639,7 +657,7 @@ class AstraDBVectorStore(VectorStore):
639657
640658 [Document(metadata={'bar': 'baz'}, page_content='thud')]
641659
642- """ # noqa: E501
660+ """
643661
644662 def filter_to_query (self , filter_dict : dict [str , Any ] | None ) -> dict [str , Any ]:
645663 """Prepare a query for use on DB based on metadata filter.
0 commit comments