|
| 1 | +import logging |
| 2 | +import time |
| 3 | +from typing import Optional |
| 4 | + |
| 5 | +from kubernetes import client, config |
| 6 | +from kubernetes.client.rest import ApiException |
| 7 | + |
| 8 | +import pkg.initializers.types.types as types |
| 9 | +import pkg.initializers.utils.utils as utils |
| 10 | + |
| 11 | +logging.basicConfig( |
| 12 | + format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", |
| 13 | + datefmt="%Y-%m-%dT%H:%M:%SZ", |
| 14 | + level=logging.INFO, |
| 15 | +) |
| 16 | + |
| 17 | + |
| 18 | +class CacheInitializer(utils.DatasetProvider): |
| 19 | + |
| 20 | + def load_config(self): |
| 21 | + config_dict = utils.get_config_from_env(types.CacheDatasetInitializer) |
| 22 | + self.config = types.CacheDatasetInitializer(**config_dict) |
| 23 | + |
| 24 | + def download_dataset(self): |
| 25 | + logging.info( |
| 26 | + f"Cache initializer called with storage URI: {self.config.storage_uri}" |
| 27 | + ) |
| 28 | + |
| 29 | + train_job_name = self.config.train_job_name |
| 30 | + cache_image = self.config.cache_image |
| 31 | + cluster_size = int(self.config.cluster_size) |
| 32 | + iam_role = self.config.iam_role |
| 33 | + head_cpu = self.config.head_cpu |
| 34 | + head_mem = self.config.head_mem |
| 35 | + worker_cpu = self.config.worker_cpu |
| 36 | + worker_mem = self.config.worker_mem |
| 37 | + |
| 38 | + # Create Kubernetes resources using client SDK |
| 39 | + create_cache_resources( |
| 40 | + train_job_name=train_job_name, |
| 41 | + iam_role=iam_role, |
| 42 | + cluster_size=cluster_size, |
| 43 | + cache_image=cache_image, |
| 44 | + head_cpu=head_cpu, |
| 45 | + head_mem=head_mem, |
| 46 | + worker_cpu=worker_cpu, |
| 47 | + worker_mem=worker_mem, |
| 48 | + namespace=self.config.namespace, |
| 49 | + metadata_loc=self.config.metadata_loc, |
| 50 | + table_name=self.config.table_name, |
| 51 | + schema_name=self.config.schema_name, |
| 52 | + ) |
| 53 | + |
| 54 | + logging.info("Cache dataset initialization completed") |
| 55 | + |
| 56 | + |
| 57 | +def create_cache_resources( |
| 58 | + train_job_name: str, |
| 59 | + iam_role: str, |
| 60 | + cluster_size: int, |
| 61 | + cache_image: str, |
| 62 | + head_cpu: str, |
| 63 | + head_mem: str, |
| 64 | + worker_cpu: str, |
| 65 | + worker_mem: str, |
| 66 | + namespace: str, |
| 67 | + metadata_loc: Optional[str] = None, |
| 68 | + table_name: Optional[str] = None, |
| 69 | + schema_name: Optional[str] = None, |
| 70 | +) -> bool: |
| 71 | + """ |
| 72 | + Creates Kubernetes resources for cache initializer using the client SDK. |
| 73 | +
|
| 74 | + Args: |
| 75 | + train_job_name: Name of the training job |
| 76 | + iam_role: IAM role ARN for the service account |
| 77 | + cluster_size: Number of workers in the cluster |
| 78 | + cache_image: Container image to use |
| 79 | + head_cpu: CPU limit/request for head node |
| 80 | + head_mem: Memory limit/request for head node |
| 81 | + worker_cpu: CPU limit/request for worker nodes |
| 82 | + worker_mem: Memory limit/request for worker nodes |
| 83 | + metadata_loc: Optional metadata location |
| 84 | + table_name: Optional table name |
| 85 | + schema_name: Optional schema name |
| 86 | + namespace: Target Kubernetes namespace |
| 87 | +
|
| 88 | + Returns: |
| 89 | + bool: True if deployment succeeded |
| 90 | + """ |
| 91 | + # Load Kubernetes configuration |
| 92 | + config.load_incluster_config() |
| 93 | + |
| 94 | + api_client = client.ApiClient() |
| 95 | + core_v1 = client.CoreV1Api(api_client) |
| 96 | + custom_api = client.CustomObjectsApi(api_client) |
| 97 | + |
| 98 | + # Get TrainingJob for owner reference |
| 99 | + try: |
| 100 | + training_job = custom_api.get_namespaced_custom_object( |
| 101 | + group="trainer.kubeflow.org", |
| 102 | + version="v1alpha1", |
| 103 | + plural="trainjobs", |
| 104 | + namespace=namespace, |
| 105 | + name=train_job_name, |
| 106 | + ) |
| 107 | + logging.info(f"TrainJob: {training_job}") |
| 108 | + |
| 109 | + # Create owner reference |
| 110 | + owner_ref = { |
| 111 | + "apiVersion": training_job["apiVersion"], |
| 112 | + "kind": training_job["kind"], |
| 113 | + "name": training_job["metadata"]["name"], |
| 114 | + "uid": training_job["metadata"]["uid"], |
| 115 | + "controller": True, |
| 116 | + "blockOwnerDeletion": True, |
| 117 | + } |
| 118 | + except ApiException as e: |
| 119 | + logging.error(f"Failed to get TrainingJob {train_job_name}: {e}") |
| 120 | + return False |
| 121 | + |
| 122 | + try: |
| 123 | + # Create ServiceAccount |
| 124 | + service_account = client.V1ServiceAccount( |
| 125 | + metadata=client.V1ObjectMeta( |
| 126 | + name=f"{train_job_name}-sa", |
| 127 | + namespace=namespace, |
| 128 | + annotations={ |
| 129 | + "eks.amazonaws.com/sts-regional-endpoints": "true", |
| 130 | + "eks.amazonaws.com/role-arn": iam_role, |
| 131 | + }, |
| 132 | + owner_references=[owner_ref], |
| 133 | + ) |
| 134 | + ) |
| 135 | + |
| 136 | + try: |
| 137 | + core_v1.create_namespaced_service_account( |
| 138 | + namespace=namespace, body=service_account |
| 139 | + ) |
| 140 | + logging.info(f"Created ServiceAccount {train_job_name}-sa") |
| 141 | + except ApiException as e: |
| 142 | + if e.status == 409: |
| 143 | + logging.info( |
| 144 | + f"ServiceAccount {train_job_name}-sa already exists, skipping creation" |
| 145 | + ) |
| 146 | + else: |
| 147 | + raise |
| 148 | + |
| 149 | + # Prepare environment variables |
| 150 | + env_vars = [] |
| 151 | + if metadata_loc: |
| 152 | + env_vars.append({"name": "METADATA_LOC", "value": metadata_loc}) |
| 153 | + if table_name: |
| 154 | + env_vars.append({"name": "TABLE_NAME", "value": table_name}) |
| 155 | + if schema_name: |
| 156 | + env_vars.append({"name": "SCHEMA_NAME", "value": schema_name}) |
| 157 | + |
| 158 | + # Create LeaderWorkerSet |
| 159 | + lws_body = { |
| 160 | + "apiVersion": "leaderworkerset.x-k8s.io/v1", |
| 161 | + "kind": "LeaderWorkerSet", |
| 162 | + "metadata": { |
| 163 | + "name": f"{train_job_name}-cache", |
| 164 | + "namespace": namespace, |
| 165 | + "ownerReferences": [owner_ref], |
| 166 | + }, |
| 167 | + "spec": { |
| 168 | + "replicas": 1, |
| 169 | + "leaderWorkerTemplate": { |
| 170 | + "size": cluster_size, |
| 171 | + "leaderTemplate": { |
| 172 | + "metadata": {"labels": {"app": f"{train_job_name}-cache-head"}}, |
| 173 | + "spec": { |
| 174 | + "serviceAccountName": f"{train_job_name}-sa", |
| 175 | + "containers": [ |
| 176 | + { |
| 177 | + "name": "head", |
| 178 | + "image": cache_image, |
| 179 | + "command": ["head"], |
| 180 | + "args": ["0.0.0.0", "50051"], |
| 181 | + "resources": { |
| 182 | + "limits": {"cpu": head_cpu, "memory": head_mem}, |
| 183 | + "requests": { |
| 184 | + "cpu": head_cpu, |
| 185 | + "memory": head_mem, |
| 186 | + }, |
| 187 | + }, |
| 188 | + "env": env_vars, |
| 189 | + "ports": [{"containerPort": 50051}], |
| 190 | + } |
| 191 | + ], |
| 192 | + }, |
| 193 | + }, |
| 194 | + "workerTemplate": { |
| 195 | + "spec": { |
| 196 | + "serviceAccountName": f"{train_job_name}-sa", |
| 197 | + "containers": [ |
| 198 | + { |
| 199 | + "name": "worker", |
| 200 | + "image": cache_image, |
| 201 | + "command": ["worker"], |
| 202 | + "args": ["0.0.0.0", "50051"], |
| 203 | + "resources": { |
| 204 | + "limits": { |
| 205 | + "cpu": worker_cpu, |
| 206 | + "memory": worker_mem, |
| 207 | + }, |
| 208 | + "requests": { |
| 209 | + "cpu": worker_cpu, |
| 210 | + "memory": worker_mem, |
| 211 | + }, |
| 212 | + }, |
| 213 | + "env": env_vars, |
| 214 | + "ports": [{"containerPort": 50051}], |
| 215 | + } |
| 216 | + ], |
| 217 | + } |
| 218 | + }, |
| 219 | + }, |
| 220 | + }, |
| 221 | + } |
| 222 | + |
| 223 | + # Create LeaderWorkerSet |
| 224 | + custom_api.create_namespaced_custom_object( |
| 225 | + group="leaderworkerset.x-k8s.io", |
| 226 | + version="v1", |
| 227 | + namespace=namespace, |
| 228 | + plural="leaderworkersets", |
| 229 | + body=lws_body, |
| 230 | + ) |
| 231 | + logging.info(f"Created LeaderWorkerSet {train_job_name}-cache") |
| 232 | + |
| 233 | + # Create Service |
| 234 | + service = client.V1Service( |
| 235 | + metadata=client.V1ObjectMeta( |
| 236 | + name=f"{train_job_name}-cache-service", |
| 237 | + namespace=namespace, |
| 238 | + owner_references=[owner_ref], |
| 239 | + ), |
| 240 | + spec=client.V1ServiceSpec( |
| 241 | + selector={"app": f"{train_job_name}-cache-head"}, |
| 242 | + ports=[ |
| 243 | + client.V1ServicePort(protocol="TCP", port=50051, target_port=50051) |
| 244 | + ], |
| 245 | + ), |
| 246 | + ) |
| 247 | + |
| 248 | + try: |
| 249 | + core_v1.create_namespaced_service(namespace=namespace, body=service) |
| 250 | + logging.info(f"Created Service {train_job_name}-cache-service") |
| 251 | + except ApiException as e: |
| 252 | + if e.status == 409: |
| 253 | + logging.info( |
| 254 | + f"Service {train_job_name}-cache-service already exists, skipping creation" |
| 255 | + ) |
| 256 | + else: |
| 257 | + raise |
| 258 | + |
| 259 | + # Wait for LeaderWorkerSet to become ready |
| 260 | + lws_name = f"{train_job_name}-cache" |
| 261 | + |
| 262 | + while True: |
| 263 | + try: |
| 264 | + lws = custom_api.get_namespaced_custom_object( |
| 265 | + group="leaderworkerset.x-k8s.io", |
| 266 | + version="v1", |
| 267 | + plural="leaderworkersets", |
| 268 | + name=lws_name, |
| 269 | + namespace=namespace, |
| 270 | + ) |
| 271 | + |
| 272 | + conditions = lws.get("status", {}).get("conditions", []) |
| 273 | + if any( |
| 274 | + c["type"] == "Available" and c["status"] == "True" |
| 275 | + for c in conditions |
| 276 | + ): |
| 277 | + logging.info(f"LeaderWorkerSet {lws_name} is ready") |
| 278 | + break |
| 279 | + |
| 280 | + time.sleep(5) |
| 281 | + except ApiException: |
| 282 | + time.sleep(2) |
| 283 | + |
| 284 | + return True |
| 285 | + |
| 286 | + except ApiException as e: |
| 287 | + logging.error(f"Deployment failed: {e}") |
| 288 | + # Cleanup on failure |
| 289 | + try: |
| 290 | + core_v1.delete_namespaced_service_account( |
| 291 | + name=f"{train_job_name}-sa", namespace=namespace |
| 292 | + ) |
| 293 | + except Exception as cleanup_error: |
| 294 | + logging.error(f"Error cleaning up ServiceAccount: {cleanup_error}") |
| 295 | + return False |
0 commit comments