|
| 1 | +import logging |
| 2 | +import time |
| 3 | + |
| 4 | +from kubernetes import client, config |
| 5 | +from kubernetes.client.rest import ApiException |
| 6 | + |
| 7 | +import pkg.initializers.types.types as types |
| 8 | +import pkg.initializers.utils.utils as utils |
| 9 | + |
| 10 | +logging.basicConfig( |
| 11 | + format="%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s", |
| 12 | + datefmt="%Y-%m-%dT%H:%M:%SZ", |
| 13 | + level=logging.INFO, |
| 14 | +) |
| 15 | + |
| 16 | + |
| 17 | +def get_namespace() -> str: |
| 18 | + """Get the current namespace from the service account token.""" |
| 19 | + try: |
| 20 | + with open("/var/run/secrets/kubernetes.io/serviceaccount/namespace") as f: |
| 21 | + return f.readline().strip() |
| 22 | + except FileNotFoundError: |
| 23 | + logging.warning( |
| 24 | + "Service account namespace file not found, using 'default' namespace" |
| 25 | + ) |
| 26 | + return "default" |
| 27 | + |
| 28 | + |
| 29 | +class CacheInitializer(utils.DatasetProvider): |
| 30 | + |
| 31 | + def load_config(self): |
| 32 | + config_dict = utils.get_config_from_env(types.CacheDatasetInitializer) |
| 33 | + self.config = types.CacheDatasetInitializer(**config_dict) |
| 34 | + |
| 35 | + def download_dataset(self): |
| 36 | + self.create_cache_cluster() |
| 37 | + |
| 38 | + def create_cache_cluster(self): |
| 39 | + """Create cache cluster resources using Kubernetes client SDK.""" |
| 40 | + logging.info( |
| 41 | + f"Cache initializer called with storage URI: {self.config.storage_uri}" |
| 42 | + ) |
| 43 | + |
| 44 | + train_job_name = self.config.train_job_name |
| 45 | + cache_image = self.config.cache_image |
| 46 | + cluster_size = int(self.config.cluster_size) |
| 47 | + iam_role = self.config.iam_role |
| 48 | + head_cpu = self.config.head_cpu |
| 49 | + head_mem = self.config.head_mem |
| 50 | + worker_cpu = self.config.worker_cpu |
| 51 | + worker_mem = self.config.worker_mem |
| 52 | + namespace = get_namespace() |
| 53 | + metadata_loc = self.config.metadata_loc |
| 54 | + table_name = self.config.table_name |
| 55 | + schema_name = self.config.schema_name |
| 56 | + |
| 57 | + # Load Kubernetes configuration |
| 58 | + config.load_incluster_config() |
| 59 | + |
| 60 | + api_client = client.ApiClient() |
| 61 | + core_v1 = client.CoreV1Api(api_client) |
| 62 | + custom_api = client.CustomObjectsApi(api_client) |
| 63 | + |
| 64 | + # Get TrainJob for owner reference |
| 65 | + try: |
| 66 | + training_job = custom_api.get_namespaced_custom_object( |
| 67 | + group="trainer.kubeflow.org", |
| 68 | + version="v1alpha1", |
| 69 | + plural="trainjobs", |
| 70 | + namespace=namespace, |
| 71 | + name=train_job_name, |
| 72 | + ) |
| 73 | + logging.info(f"TrainJob: {training_job}") |
| 74 | + |
| 75 | + # Create owner reference dictionary |
| 76 | + logging.info( |
| 77 | + f"Creating owner reference from TrainJob: {training_job['metadata']['name']}" |
| 78 | + ) |
| 79 | + |
| 80 | + owner_ref_dict = { |
| 81 | + "apiVersion": training_job["apiVersion"], |
| 82 | + "kind": training_job["kind"], |
| 83 | + "name": training_job["metadata"]["name"], |
| 84 | + "uid": training_job["metadata"]["uid"], |
| 85 | + "controller": True, |
| 86 | + "blockOwnerDeletion": True, |
| 87 | + } |
| 88 | + |
| 89 | + logging.info( |
| 90 | + f"Owner reference created with apiVersion='{training_job['apiVersion']}', " |
| 91 | + f"kind='{training_job['kind']}')" |
| 92 | + ) |
| 93 | + except ApiException as e: |
| 94 | + logging.error(f"Failed to get TrainJob {train_job_name}: {e}") |
| 95 | + return |
| 96 | + |
| 97 | + try: |
| 98 | + # Create ServiceAccount |
| 99 | + service_account = client.V1ServiceAccount( |
| 100 | + metadata=client.V1ObjectMeta( |
| 101 | + name=f"{train_job_name}-cache", |
| 102 | + namespace=namespace, |
| 103 | + annotations={ |
| 104 | + "eks.amazonaws.com/sts-regional-endpoints": "true", |
| 105 | + "eks.amazonaws.com/role-arn": iam_role, |
| 106 | + }, |
| 107 | + owner_references=[owner_ref_dict], |
| 108 | + ) |
| 109 | + ) |
| 110 | + |
| 111 | + try: |
| 112 | + core_v1.create_namespaced_service_account( |
| 113 | + namespace=namespace, body=service_account |
| 114 | + ) |
| 115 | + logging.info(f"Created ServiceAccount {service_account.metadata.name}") |
| 116 | + except ApiException as e: |
| 117 | + if e.status == 409: |
| 118 | + logging.info( |
| 119 | + f"ServiceAccount {service_account.metadata.name} " |
| 120 | + f"already exists, skipping creation" |
| 121 | + ) |
| 122 | + else: |
| 123 | + raise e |
| 124 | + |
| 125 | + # Prepare environment variables |
| 126 | + env_vars = [] |
| 127 | + if metadata_loc: |
| 128 | + env_vars.append({"name": "METADATA_LOC", "value": metadata_loc}) |
| 129 | + if table_name: |
| 130 | + env_vars.append({"name": "TABLE_NAME", "value": table_name}) |
| 131 | + if schema_name: |
| 132 | + env_vars.append({"name": "SCHEMA_NAME", "value": schema_name}) |
| 133 | + |
| 134 | + # Create LeaderWorkerSet |
| 135 | + lws_body = { |
| 136 | + "apiVersion": "leaderworkerset.x-k8s.io/v1", |
| 137 | + "kind": "LeaderWorkerSet", |
| 138 | + "metadata": { |
| 139 | + "name": f"{train_job_name}-cache", |
| 140 | + "namespace": namespace, |
| 141 | + "ownerReferences": [owner_ref_dict], |
| 142 | + }, |
| 143 | + "spec": { |
| 144 | + "replicas": 1, |
| 145 | + "leaderWorkerTemplate": { |
| 146 | + "size": cluster_size, |
| 147 | + "leaderTemplate": { |
| 148 | + "metadata": { |
| 149 | + "labels": {"app": f"{train_job_name}-cache-head"} |
| 150 | + }, |
| 151 | + "spec": { |
| 152 | + "serviceAccountName": f"{train_job_name}-cache", |
| 153 | + "containers": [ |
| 154 | + { |
| 155 | + "name": "head", |
| 156 | + "image": cache_image, |
| 157 | + "command": ["head"], |
| 158 | + "args": ["0.0.0.0", "50051"], |
| 159 | + "resources": { |
| 160 | + "limits": { |
| 161 | + "cpu": head_cpu, |
| 162 | + "memory": head_mem, |
| 163 | + }, |
| 164 | + "requests": { |
| 165 | + "cpu": head_cpu, |
| 166 | + "memory": head_mem, |
| 167 | + }, |
| 168 | + }, |
| 169 | + "env": env_vars, |
| 170 | + "ports": [{"containerPort": 50051}], |
| 171 | + } |
| 172 | + ], |
| 173 | + }, |
| 174 | + }, |
| 175 | + "workerTemplate": { |
| 176 | + "spec": { |
| 177 | + "serviceAccountName": f"{train_job_name}-cache", |
| 178 | + "containers": [ |
| 179 | + { |
| 180 | + "name": "worker", |
| 181 | + "image": cache_image, |
| 182 | + "command": ["worker"], |
| 183 | + "args": ["0.0.0.0", "50051"], |
| 184 | + "resources": { |
| 185 | + "limits": { |
| 186 | + "cpu": worker_cpu, |
| 187 | + "memory": worker_mem, |
| 188 | + }, |
| 189 | + "requests": { |
| 190 | + "cpu": worker_cpu, |
| 191 | + "memory": worker_mem, |
| 192 | + }, |
| 193 | + }, |
| 194 | + "env": env_vars, |
| 195 | + "ports": [{"containerPort": 50051}], |
| 196 | + } |
| 197 | + ], |
| 198 | + } |
| 199 | + }, |
| 200 | + }, |
| 201 | + }, |
| 202 | + } |
| 203 | + |
| 204 | + # Create LeaderWorkerSet |
| 205 | + custom_api.create_namespaced_custom_object( |
| 206 | + group="leaderworkerset.x-k8s.io", |
| 207 | + version="v1", |
| 208 | + namespace=namespace, |
| 209 | + plural="leaderworkersets", |
| 210 | + body=lws_body, |
| 211 | + ) |
| 212 | + logging.info(f"Created LeaderWorkerSet {lws_body['metadata']['name']}") |
| 213 | + |
| 214 | + # Create Service |
| 215 | + service = client.V1Service( |
| 216 | + metadata=client.V1ObjectMeta( |
| 217 | + name=f"{train_job_name}-cache-service", |
| 218 | + namespace=namespace, |
| 219 | + owner_references=[owner_ref_dict], |
| 220 | + ), |
| 221 | + spec=client.V1ServiceSpec( |
| 222 | + selector={"app": f"{train_job_name}-cache-head"}, |
| 223 | + ports=[ |
| 224 | + client.V1ServicePort( |
| 225 | + protocol="TCP", port=50051, target_port=50051 |
| 226 | + ) |
| 227 | + ], |
| 228 | + ), |
| 229 | + ) |
| 230 | + |
| 231 | + try: |
| 232 | + core_v1.create_namespaced_service(namespace=namespace, body=service) |
| 233 | + logging.info(f"Created Service {service.metadata.name}") |
| 234 | + except ApiException as e: |
| 235 | + if e.status == 409: |
| 236 | + logging.info( |
| 237 | + f"Service {service.metadata.name} already exists, " |
| 238 | + f"skipping creation" |
| 239 | + ) |
| 240 | + else: |
| 241 | + raise e |
| 242 | + |
| 243 | + # Wait for LeaderWorkerSet to become ready |
| 244 | + # TODO:// refactor to use watch API |
| 245 | + while True: |
| 246 | + try: |
| 247 | + lws = custom_api.get_namespaced_custom_object( |
| 248 | + group="leaderworkerset.x-k8s.io", |
| 249 | + version="v1", |
| 250 | + plural="leaderworkersets", |
| 251 | + name=lws_body["metadata"]["name"], |
| 252 | + namespace=namespace, |
| 253 | + ) |
| 254 | + |
| 255 | + conditions = lws.get("status", {}).get("conditions", []) |
| 256 | + if any( |
| 257 | + c["type"] == "Available" and c["status"] == "True" |
| 258 | + for c in conditions |
| 259 | + ): |
| 260 | + logging.info( |
| 261 | + f"LeaderWorkerSet {lws_body['metadata']['name']} is ready" |
| 262 | + ) |
| 263 | + break |
| 264 | + |
| 265 | + time.sleep(5) |
| 266 | + except ApiException as e: |
| 267 | + raise e |
| 268 | + |
| 269 | + except ApiException as e: |
| 270 | + logging.error(f"Cache cluster creation failed: {e}") |
| 271 | + # Cleanup on failure |
| 272 | + try: |
| 273 | + core_v1.delete_namespaced_service_account( |
| 274 | + name=f"{train_job_name}-cache", namespace=namespace |
| 275 | + ) |
| 276 | + except Exception as cleanup_error: |
| 277 | + logging.error(f"Error cleaning up ServiceAccount: {cleanup_error}") |
| 278 | + return |
| 279 | + |
| 280 | + logging.info("Cache cluster creation completed") |
0 commit comments