-
Notifications
You must be signed in to change notification settings - Fork 33
Implement TIGER TIL task #885
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jklubienski
wants to merge
3
commits into
kaiko-ai:main
Choose a base branch
from
jklubienski:feature/tiger-til
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
136 changes: 136 additions & 0 deletions
136
configs/vision/pathology/offline/regression/tiger_til_score.yaml
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,136 @@ | ||
| --- | ||
| trainer: | ||
| class_path: eva.Trainer | ||
| init_args: | ||
| n_runs: &N_RUNS ${oc.env:N_RUNS, 20} | ||
| default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, dino_vits16}/offline/tiger_til} | ||
| max_epochs: &MAX_EPOCHS ${oc.env:MAX_EPOCHS, 100} | ||
| checkpoint_type: ${oc.env:CHECKPOINT_TYPE, best} | ||
| callbacks: | ||
| - class_path: eva.callbacks.ConfigurationLogger | ||
| - class_path: lightning.pytorch.callbacks.TQDMProgressBar | ||
| init_args: | ||
| refresh_rate: ${oc.env:TQDM_REFRESH_RATE, 1} | ||
| - class_path: lightning.pytorch.callbacks.LearningRateMonitor | ||
| init_args: | ||
| logging_interval: epoch | ||
| - class_path: lightning.pytorch.callbacks.ModelCheckpoint | ||
| init_args: | ||
| filename: best | ||
| save_last: ${oc.env:SAVE_LAST, false} | ||
| save_top_k: 1 | ||
| monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/MAE} | ||
| mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, min} | ||
| - class_path: lightning.pytorch.callbacks.EarlyStopping | ||
| init_args: | ||
| min_delta: 0 | ||
| patience: ${oc.env:PATIENCE, 20} | ||
| monitor: *MONITOR_METRIC | ||
| mode: *MONITOR_METRIC_MODE | ||
| - class_path: eva.callbacks.ClassificationEmbeddingsWriter | ||
| init_args: | ||
| output_dir: &DATASET_EMBEDDINGS_ROOT ${oc.env:EMBEDDINGS_ROOT, ./data/embeddings/${oc.env:MODEL_NAME, dino_vits16}/tiger_til} | ||
| dataloader_idx_map: | ||
| 0: train | ||
| 1: val | ||
| 2: test | ||
| metadata_keys: ["wsi_id"] | ||
| backbone: | ||
| class_path: eva.vision.models.ModelFromRegistry | ||
| init_args: | ||
| model_name: ${oc.env:MODEL_NAME, universal/vit_small_patch16_224_dino} | ||
| model_extra_kwargs: ${oc.env:MODEL_EXTRA_KWARGS, null} | ||
| overwrite: false | ||
| logger: | ||
| - class_path: lightning.pytorch.loggers.TensorBoardLogger | ||
| init_args: | ||
| save_dir: *OUTPUT_ROOT | ||
| name: "" | ||
| model: | ||
| class_path: eva.HeadModule | ||
| init_args: | ||
| head: | ||
| class_path: eva.vision.models.networks.ABMIL | ||
| init_args: | ||
| input_size: ${oc.env:IN_FEATURES, 384} | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do we need to set |
||
| criterion: torch.nn.MSELoss | ||
| optimizer: | ||
| class_path: torch.optim.AdamW | ||
| init_args: | ||
| lr: ${oc.env:LR_VALUE, 0.001} | ||
| betas: [0.9, 0.999] | ||
| metrics: | ||
| common: | ||
| - class_path: eva.core.metrics.AverageLoss | ||
| - class_path: eva.core.metrics.RegressionMetrics | ||
| init_args: | ||
| prefix: null | ||
| postfix: null | ||
| data: | ||
| class_path: eva.DataModule | ||
| init_args: | ||
| datasets: | ||
| train: | ||
| class_path: eva.datasets.MultiEmbeddingsRegressionDataset | ||
| init_args: &DATASET_ARGS | ||
| root: *DATASET_EMBEDDINGS_ROOT | ||
| manifest_file: manifest.csv | ||
| split: train | ||
| embeddings_transforms: | ||
| class_path: eva.core.data.transforms.Pad2DTensor | ||
| init_args: | ||
| pad_size: &N_PATCHES ${oc.env:N_PATCHES, 200} | ||
| target_transforms: | ||
| class_path: eva.vision.data.transforms.common.Squeeze | ||
| init_args: | ||
| dim: -1 | ||
| val: | ||
| class_path: eva.datasets.MultiEmbeddingsRegressionDataset | ||
| init_args: | ||
| <<: *DATASET_ARGS | ||
| split: val | ||
| test: | ||
| class_path: eva.datasets.MultiEmbeddingsRegressionDataset | ||
| init_args: | ||
| <<: *DATASET_ARGS | ||
| split: test | ||
| predict: | ||
| - class_path: eva.vision.datasets.TIGERTILScore | ||
| init_args: &PREDICT_DATASET_ARGS | ||
| root: ${oc.env:DATA_ROOT, ./data/training/wsitils} | ||
| sampler: | ||
| class_path: eva.vision.data.wsi.patching.samplers.ForegroundGridSampler | ||
| init_args: | ||
| max_samples: *N_PATCHES | ||
| width: 224 | ||
| height: 224 | ||
| split: train | ||
| coords_path: ${data.init_args.datasets.train.init_args.root}/coords_${.split}.csv | ||
| image_transforms: | ||
| class_path: eva.vision.data.transforms.common.ResizeAndCrop | ||
| init_args: | ||
| size: ${oc.env:RESIZE_DIM, 224} | ||
| mean: ${oc.env:NORMALIZE_MEAN, [0.485, 0.456, 0.406]} | ||
| std: ${oc.env:NORMALIZE_STD, [0.229, 0.224, 0.225]} | ||
| - class_path: eva.vision.datasets.TIGERTILScore | ||
| init_args: | ||
| <<: *PREDICT_DATASET_ARGS | ||
| split: val | ||
| - class_path: eva.vision.datasets.TIGERTILScore | ||
| init_args: | ||
| <<: *PREDICT_DATASET_ARGS | ||
| split: test | ||
| dataloaders: | ||
| train: | ||
| batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 32} | ||
| num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4} | ||
| shuffle: true | ||
| val: | ||
| batch_size: *BATCH_SIZE | ||
| num_workers: *N_DATA_WORKERS | ||
| test: | ||
| batch_size: *BATCH_SIZE | ||
| num_workers: *N_DATA_WORKERS | ||
| predict: | ||
| batch_size: &PREDICT_BATCH_SIZE ${oc.env:PREDICT_BATCH_SIZE, 64} | ||
| num_workers: *N_DATA_WORKERS | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
108 changes: 7 additions & 101 deletions
108
src/eva/core/data/datasets/classification/multi_embeddings.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -1,110 +1,16 @@ | ||
| """Dataset class for where a sample corresponds to multiple embeddings.""" | ||
|
|
||
| import os | ||
| from typing import Callable, Dict, List, Literal | ||
| """Dataset class for where a classification task sample corresponds to multiple embeddings.""" | ||
|
|
||
| import numpy as np | ||
| import torch | ||
| from typing_extensions import override | ||
|
|
||
| from eva.core.data.datasets import embeddings as embeddings_base | ||
| from eva.core.data.datasets.multi_embeddings import MultiEmbeddingsDataset | ||
|
|
||
|
|
||
| class MultiEmbeddingsClassificationDataset(embeddings_base.EmbeddingsDataset[torch.Tensor]): | ||
| class MultiEmbeddingsClassificationDataset(MultiEmbeddingsDataset): | ||
| """Dataset class for where a sample corresponds to multiple embeddings. | ||
|
|
||
| Example use case: Slide level dataset where each slide has multiple patch embeddings. | ||
| Specialised for classification data with an int target type. | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| root: str, | ||
| manifest_file: str, | ||
| split: Literal["train", "val", "test"], | ||
| column_mapping: Dict[str, str] = embeddings_base.default_column_mapping, | ||
| embeddings_transforms: Callable | None = None, | ||
| target_transforms: Callable | None = None, | ||
| ): | ||
| """Initialize dataset. | ||
|
|
||
| Expects a manifest file listing the paths of `.pt` files containing tensor embeddings. | ||
|
|
||
| The manifest must have a `column_mapping["multi_id"]` column that contains the | ||
| unique identifier group of embeddings. For oncology datasets, this would be usually | ||
| the slide id. Each row in the manifest file points to a .pt file that can contain | ||
| one or multiple embeddings (either as a list or stacked tensors). There can also be | ||
| multiple rows for the same `multi_id`, in which case the embeddings from the different | ||
| .pt files corresponding to that same `multi_id` will be stacked along the first dimension. | ||
|
|
||
| Args: | ||
| root: Root directory of the dataset. | ||
| manifest_file: The path to the manifest file, which is relative to | ||
| the `root` argument. | ||
| split: The dataset split to use. The `split` column of the manifest | ||
| file will be splitted based on this value. | ||
| column_mapping: Defines the map between the variables and the manifest | ||
| columns. It will overwrite the `default_column_mapping` with | ||
| the provided values, so that `column_mapping` can contain only the | ||
| values which are altered or missing. | ||
| embeddings_transforms: A function/transform that transforms the embedding. | ||
| target_transforms: A function/transform that transforms the target. | ||
| """ | ||
| super().__init__( | ||
| manifest_file=manifest_file, | ||
| root=root, | ||
| split=split, | ||
| column_mapping=column_mapping, | ||
| embeddings_transforms=embeddings_transforms, | ||
| target_transforms=target_transforms, | ||
| ) | ||
|
|
||
| self._multi_ids: List[int] | ||
|
|
||
| @override | ||
| def setup(self): | ||
| super().setup() | ||
| self._multi_ids = list(self._data[self._column_mapping["multi_id"]].unique()) | ||
|
|
||
| @override | ||
| def load_embeddings(self, index: int) -> torch.Tensor: | ||
| """Loads and stacks all embedding corresponding to the `index`'th multi_id.""" | ||
| # Get all embeddings for the given index (multi_id) | ||
| multi_id = self._multi_ids[index] | ||
| embedding_paths = self._data.loc[ | ||
| self._data[self._column_mapping["multi_id"]] == multi_id, self._column_mapping["path"] | ||
| ].to_list() | ||
|
|
||
| # Load embeddings and stack them accross the first dimension | ||
| embeddings = [] | ||
| for path in embedding_paths: | ||
| embedding = torch.load(os.path.join(self._root, path), map_location="cpu") | ||
| if isinstance(embedding, list): | ||
| embedding = torch.stack(embedding, dim=0) | ||
| embeddings.append(embedding.unsqueeze(0) if embedding.ndim == 1 else embedding) | ||
| embeddings = torch.cat(embeddings, dim=0) | ||
|
|
||
| if not embeddings.ndim == 2: | ||
| raise ValueError(f"Expected 2D tensor, got {embeddings.ndim} for {multi_id}.") | ||
|
|
||
| return embeddings | ||
|
|
||
| @override | ||
| def load_target(self, index: int) -> np.ndarray: | ||
| """Returns the target corresponding to the `index`'th multi_id. | ||
|
|
||
| This method assumes that all the embeddings corresponding to the same `multi_id` | ||
| have the same target. If this is not the case, it will raise an error. | ||
| """ | ||
| multi_id = self._multi_ids[index] | ||
| targets = self._data.loc[ | ||
| self._data[self._column_mapping["multi_id"]] == multi_id, self._column_mapping["target"] | ||
| ] | ||
|
|
||
| if not targets.nunique() == 1: | ||
| raise ValueError(f"Multiple targets found for {multi_id}.") | ||
|
|
||
| return np.asarray(targets.iloc[0], dtype=np.int64) | ||
|
|
||
| @override | ||
| def __len__(self) -> int: | ||
| return len(self._multi_ids) | ||
| def __init__(self, *args, **kwargs): | ||
| """Initialize dataset with the correct return type.""" | ||
| super().__init__(*args, target_type=np.int64, **kwargs) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,114 @@ | ||
| """Dataset class for where a sample corresponds to multiple embeddings.""" | ||
|
|
||
| import os | ||
| from typing import Any, Callable, Dict, List, Literal | ||
|
|
||
| import numpy as np | ||
| import numpy.typing as npt | ||
| import torch | ||
| from typing_extensions import override | ||
|
|
||
| from eva.core.data.datasets import embeddings as base | ||
|
|
||
|
|
||
| class MultiEmbeddingsDataset(base.EmbeddingsDataset[torch.Tensor]): | ||
| """Dataset class for where a sample corresponds to multiple embeddings. | ||
|
|
||
| Example use case: Slide level dataset where each slide has multiple patch embeddings. | ||
| """ | ||
|
|
||
| def __init__( | ||
| self, | ||
| root: str, | ||
| manifest_file: str, | ||
| split: Literal["train", "val", "test"], | ||
| column_mapping: Dict[str, str] = base.default_column_mapping, | ||
| embeddings_transforms: Callable | None = None, | ||
| target_transforms: Callable | None = None, | ||
| target_type: type[np.generic] = np.int64, | ||
| ): | ||
| """Initialize dataset. | ||
|
|
||
| Expects a manifest file listing the paths of `.pt` files containing tensor embeddings. | ||
|
|
||
| The manifest must have a `column_mapping["multi_id"]` column that contains the | ||
| unique identifier group of embeddings. For oncology datasets, this would be usually | ||
| the slide id. Each row in the manifest file points to a .pt file that can contain | ||
| one or multiple embeddings (either as a list or stacked tensors). There can also be | ||
| multiple rows for the same `multi_id`, in which case the embeddings from the different | ||
| .pt files corresponding to that same `multi_id` will be stacked along the first dimension. | ||
|
|
||
| Args: | ||
| root: Root directory of the dataset. | ||
| manifest_file: The path to the manifest file, which is relative to | ||
| the `root` argument. | ||
| split: The dataset split to use. The `split` column of the manifest | ||
| file will be splitted based on this value. | ||
| column_mapping: Defines the map between the variables and the manifest | ||
| columns. It will overwrite the `default_column_mapping` with | ||
| the provided values, so that `column_mapping` can contain only the | ||
| values which are altered or missing. | ||
| embeddings_transforms: A function/transform that transforms the embedding. | ||
| target_transforms: A function/transform that transforms the target. | ||
| target_type: Desired type of the target data | ||
| """ | ||
| super().__init__( | ||
| manifest_file=manifest_file, | ||
| root=root, | ||
| split=split, | ||
| column_mapping=column_mapping, | ||
| embeddings_transforms=embeddings_transforms, | ||
| target_transforms=target_transforms, | ||
| ) | ||
|
|
||
| self._multi_ids: List[int] | ||
| self._target_type = target_type | ||
|
|
||
| @override | ||
| def setup(self): | ||
| super().setup() | ||
| self._multi_ids = list(self._data[self._column_mapping["multi_id"]].unique()) | ||
|
|
||
| @override | ||
| def load_embeddings(self, index: int) -> torch.Tensor: | ||
| """Loads and stacks all embedding corresponding to the `index`'th multi_id.""" | ||
| # Get all embeddings for the given index (multi_id) | ||
| multi_id = self._multi_ids[index] | ||
| embedding_paths = self._data.loc[ | ||
| self._data[self._column_mapping["multi_id"]] == multi_id, self._column_mapping["path"] | ||
| ].to_list() | ||
|
|
||
| # Load embeddings and stack them accross the first dimension | ||
| embeddings = [] | ||
| for path in embedding_paths: | ||
| embedding = torch.load(os.path.join(self._root, path), map_location="cpu") | ||
| if isinstance(embedding, list): | ||
| embedding = torch.stack(embedding, dim=0) | ||
| embeddings.append(embedding.unsqueeze(0) if embedding.ndim == 1 else embedding) | ||
| embeddings = torch.cat(embeddings, dim=0) | ||
|
|
||
| if not embeddings.ndim == 2: | ||
| raise ValueError(f"Expected 2D tensor, got {embeddings.ndim} for {multi_id}.") | ||
|
|
||
| return embeddings | ||
|
|
||
| @override | ||
| def load_target(self, index: int) -> npt.NDArray[Any]: | ||
| """Returns the target corresponding to the `index`'th multi_id. | ||
|
|
||
| This method assumes that all the embeddings corresponding to the same `multi_id` | ||
| have the same target. If this is not the case, it will raise an error. | ||
| """ | ||
| multi_id = self._multi_ids[index] | ||
| targets = self._data.loc[ | ||
| self._data[self._column_mapping["multi_id"]] == multi_id, self._column_mapping["target"] | ||
| ] | ||
|
|
||
| if not targets.nunique() == 1: | ||
| raise ValueError(f"Multiple targets found for {multi_id}.") | ||
|
|
||
| return np.asarray(targets.iloc[0], dtype=self._target_type) | ||
|
|
||
| @override | ||
| def __len__(self) -> int: | ||
| return len(self._multi_ids) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,6 @@ | ||
| """Embedding regression datasets API.""" | ||
|
|
||
| from eva.core.data.datasets.regression.embeddings import EmbeddingsRegressionDataset | ||
| from eva.core.data.datasets.regression.multi_embeddings import MultiEmbeddingsRegressionDataset | ||
|
|
||
| __all__ = ["EmbeddingsRegressionDataset", "MultiEmbeddingsRegressionDataset"] |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Plz add this config to
tests/eva/vision/test_vision_cli.py(at least totest_configuration_initialization, ideally also totest_predict_fit_from_configuration), so we can test for instantiation errors