|
| 1 | +--- |
| 2 | +trainer: |
| 3 | + class_path: eva.Trainer |
| 4 | + init_args: |
| 5 | + n_runs: &N_RUNS ${oc.env:N_RUNS, 20} |
| 6 | + default_root_dir: &OUTPUT_ROOT ${oc.env:OUTPUT_ROOT, logs/${oc.env:MODEL_NAME, dino_vits16}/offline/tiger_tumour} |
| 7 | + max_epochs: &MAX_EPOCHS ${oc.env:MAX_EPOCHS, 100} |
| 8 | + checkpoint_type: ${oc.env:CHECKPOINT_TYPE, best} |
| 9 | + callbacks: |
| 10 | + - class_path: eva.callbacks.ConfigurationLogger |
| 11 | + - class_path: lightning.pytorch.callbacks.TQDMProgressBar |
| 12 | + init_args: |
| 13 | + refresh_rate: ${oc.env:TQDM_REFRESH_RATE, 1} |
| 14 | + - class_path: lightning.pytorch.callbacks.LearningRateMonitor |
| 15 | + init_args: |
| 16 | + logging_interval: epoch |
| 17 | + - class_path: lightning.pytorch.callbacks.ModelCheckpoint |
| 18 | + init_args: |
| 19 | + filename: best |
| 20 | + save_last: ${oc.env:SAVE_LAST, false} |
| 21 | + save_top_k: 1 |
| 22 | + monitor: &MONITOR_METRIC ${oc.env:MONITOR_METRIC, val/BinaryBalancedAccuracy} |
| 23 | + mode: &MONITOR_METRIC_MODE ${oc.env:MONITOR_METRIC_MODE, max} |
| 24 | + - class_path: lightning.pytorch.callbacks.EarlyStopping |
| 25 | + init_args: |
| 26 | + min_delta: 0 |
| 27 | + patience: ${oc.env:PATIENCE, 20} |
| 28 | + monitor: *MONITOR_METRIC |
| 29 | + mode: *MONITOR_METRIC_MODE |
| 30 | + - class_path: eva.callbacks.ClassificationEmbeddingsWriter |
| 31 | + init_args: |
| 32 | + output_dir: &DATASET_EMBEDDINGS_ROOT ${oc.env:EMBEDDINGS_ROOT, ./data/embeddings/${oc.env:MODEL_NAME, dino_vits16}/tiger_tumour} |
| 33 | + dataloader_idx_map: |
| 34 | + 0: train |
| 35 | + 1: val |
| 36 | + 2: test |
| 37 | + metadata_keys: ["wsi_id"] |
| 38 | + backbone: |
| 39 | + class_path: eva.vision.models.ModelFromRegistry |
| 40 | + init_args: |
| 41 | + model_name: ${oc.env:MODEL_NAME, universal/vit_small_patch16_224_dino} |
| 42 | + model_extra_kwargs: ${oc.env:MODEL_EXTRA_KWARGS, null} |
| 43 | + overwrite: false |
| 44 | + logger: |
| 45 | + - class_path: lightning.pytorch.loggers.TensorBoardLogger |
| 46 | + init_args: |
| 47 | + save_dir: *OUTPUT_ROOT |
| 48 | + name: "" |
| 49 | +model: |
| 50 | + class_path: eva.HeadModule |
| 51 | + init_args: |
| 52 | + head: |
| 53 | + class_path: eva.vision.models.networks.ABMIL |
| 54 | + init_args: |
| 55 | + input_size: ${oc.env:IN_FEATURES, 384} |
| 56 | + output_size: &NUM_CLASSES 1 |
| 57 | + projected_input_size: 128 |
| 58 | + criterion: torch.nn.BCEWithLogitsLoss |
| 59 | + optimizer: |
| 60 | + class_path: torch.optim.AdamW |
| 61 | + init_args: |
| 62 | + lr: ${oc.env:LR_VALUE, 0.001} |
| 63 | + betas: [0.9, 0.999] |
| 64 | + metrics: |
| 65 | + common: |
| 66 | + - class_path: eva.metrics.AverageLoss |
| 67 | + - class_path: eva.metrics.BinaryClassificationMetrics |
| 68 | +data: |
| 69 | + class_path: eva.DataModule |
| 70 | + init_args: |
| 71 | + datasets: |
| 72 | + train: |
| 73 | + class_path: eva.datasets.MultiEmbeddingsClassificationDataset |
| 74 | + init_args: &DATASET_ARGS |
| 75 | + root: *DATASET_EMBEDDINGS_ROOT |
| 76 | + manifest_file: manifest.csv |
| 77 | + split: train |
| 78 | + embeddings_transforms: |
| 79 | + class_path: eva.core.data.transforms.Pad2DTensor |
| 80 | + init_args: |
| 81 | + pad_size: &N_PATCHES ${oc.env:N_PATCHES, 200} |
| 82 | + target_transforms: |
| 83 | + class_path: eva.core.data.transforms.dtype.ArrayToFloatTensor |
| 84 | + val: |
| 85 | + class_path: eva.datasets.MultiEmbeddingsClassificationDataset |
| 86 | + init_args: |
| 87 | + <<: *DATASET_ARGS |
| 88 | + split: val |
| 89 | + test: |
| 90 | + class_path: eva.datasets.MultiEmbeddingsClassificationDataset |
| 91 | + init_args: |
| 92 | + <<: *DATASET_ARGS |
| 93 | + split: test |
| 94 | + predict: |
| 95 | + - class_path: eva.vision.datasets.TIGERTumour |
| 96 | + init_args: &PREDICT_DATASET_ARGS |
| 97 | + root: ${oc.env:DATA_ROOT, ./data/training/wsibulk} |
| 98 | + sampler: |
| 99 | + class_path: eva.vision.data.wsi.patching.samplers.ForegroundGridSampler |
| 100 | + init_args: |
| 101 | + max_samples: *N_PATCHES |
| 102 | + width: 224 |
| 103 | + height: 224 |
| 104 | + target_mpp: 0.5 |
| 105 | + split: train |
| 106 | + coords_path: ${data.init_args.datasets.train.init_args.root}/coords_${.split}.csv |
| 107 | + image_transforms: |
| 108 | + class_path: eva.vision.data.transforms.common.ResizeAndCrop |
| 109 | + init_args: |
| 110 | + size: ${oc.env:RESIZE_DIM, 224} |
| 111 | + mean: ${oc.env:NORMALIZE_MEAN, [0.485, 0.456, 0.406]} |
| 112 | + std: ${oc.env:NORMALIZE_STD, [0.229, 0.224, 0.225]} |
| 113 | + - class_path: eva.vision.datasets.TIGERTumour |
| 114 | + init_args: |
| 115 | + <<: *PREDICT_DATASET_ARGS |
| 116 | + split: val |
| 117 | + - class_path: eva.vision.datasets.TIGERTumour |
| 118 | + init_args: |
| 119 | + <<: *PREDICT_DATASET_ARGS |
| 120 | + split: test |
| 121 | + dataloaders: |
| 122 | + train: |
| 123 | + batch_size: &BATCH_SIZE ${oc.env:BATCH_SIZE, 32} |
| 124 | + num_workers: &N_DATA_WORKERS ${oc.env:N_DATA_WORKERS, 4} |
| 125 | + shuffle: true |
| 126 | + val: |
| 127 | + batch_size: *BATCH_SIZE |
| 128 | + num_workers: *N_DATA_WORKERS |
| 129 | + test: |
| 130 | + batch_size: *BATCH_SIZE |
| 131 | + num_workers: *N_DATA_WORKERS |
| 132 | + predict: |
| 133 | + batch_size: &PREDICT_BATCH_SIZE ${oc.env:PREDICT_BATCH_SIZE, 64} |
| 134 | + num_workers: *N_DATA_WORKERS |
0 commit comments