|
| 1 | +# Standard |
| 2 | +from unittest.mock import MagicMock, patch |
| 3 | +import os |
| 4 | + |
| 5 | +# Third Party |
| 6 | +from torch.utils.data import DataLoader |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | + |
| 10 | +# First Party |
| 11 | +from instructlab.training.accelerator import Accelerator |
| 12 | +from instructlab.training.config import DeepSpeedOptions, DistributedBackend |
| 13 | +from instructlab.training.model import Model |
| 14 | + |
| 15 | + |
| 16 | +@pytest.fixture |
| 17 | +def mock_model(): |
| 18 | + model = MagicMock(spec=Model) |
| 19 | + model.model = MagicMock() |
| 20 | + model.lora_config = None |
| 21 | + model._no_split_modules = ["LlamaDecoderLayer"] |
| 22 | + # Add children method to model |
| 23 | + model.children = MagicMock(return_value=[]) |
| 24 | + model.model.children = MagicMock(return_value=[]) |
| 25 | + # Add get_module_class_from_name method |
| 26 | + model.get_module_class_from_name = MagicMock(return_value=torch.nn.Module) |
| 27 | + return model |
| 28 | + |
| 29 | + |
| 30 | +@pytest.fixture |
| 31 | +def mock_train_loader(): |
| 32 | + loader = MagicMock(spec=DataLoader) |
| 33 | + loader.dataset = MagicMock() |
| 34 | + return loader |
| 35 | + |
| 36 | + |
| 37 | +@pytest.fixture |
| 38 | +def mock_optimizer(): |
| 39 | + optimizer = MagicMock(spec=torch.optim.Optimizer) |
| 40 | + # Add param_groups attribute with required keys |
| 41 | + optimizer.param_groups = [{"params": [], "lr": 1e-4}] |
| 42 | + return optimizer |
| 43 | + |
| 44 | + |
| 45 | +@pytest.fixture |
| 46 | +def mock_transformers_accel(): |
| 47 | + with patch("instructlab.training.accelerator.TransformersAccel") as mock: |
| 48 | + yield mock |
| 49 | + |
| 50 | + |
| 51 | +def test_accelerator_init_deepspeed( |
| 52 | + mock_model, mock_train_loader, mock_transformers_accel |
| 53 | +): |
| 54 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 55 | + accelerator = Accelerator( |
| 56 | + model=mock_model, |
| 57 | + samples_per_gpu=8, |
| 58 | + grad_accum=2, |
| 59 | + train_loader=mock_train_loader, |
| 60 | + save_samples=1000, |
| 61 | + distributed_framework=DistributedBackend.DEEPSPEED, |
| 62 | + deepspeed_cpu_offload_optimizer_ratio=1.0, # Add default value |
| 63 | + ) |
| 64 | + |
| 65 | + assert accelerator.samples_per_gpu == 8 |
| 66 | + assert accelerator.grad_accum == 2 |
| 67 | + assert accelerator.model == mock_model |
| 68 | + assert accelerator.distributed_framework == DistributedBackend.DEEPSPEED |
| 69 | + assert accelerator.train_loader == mock_train_loader |
| 70 | + assert accelerator.save_samples == 1000 |
| 71 | + |
| 72 | + |
| 73 | +def test_accelerator_init_fsdp(mock_model, mock_train_loader, mock_transformers_accel): |
| 74 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 75 | + accelerator = Accelerator( |
| 76 | + model=mock_model, |
| 77 | + samples_per_gpu=8, |
| 78 | + grad_accum=2, |
| 79 | + train_loader=mock_train_loader, |
| 80 | + save_samples=1000, |
| 81 | + distributed_framework=DistributedBackend.FSDP, |
| 82 | + fsdp_sharding_strategy="HYBRID_SHARD", |
| 83 | + ) |
| 84 | + |
| 85 | + assert accelerator.samples_per_gpu == 8 |
| 86 | + assert accelerator.grad_accum == 2 |
| 87 | + assert accelerator.model == mock_model |
| 88 | + assert accelerator.distributed_framework == DistributedBackend.FSDP |
| 89 | + assert accelerator.fsdp_sharding_strategy == "HYBRID_SHARD" |
| 90 | + |
| 91 | + |
| 92 | +def test_accelerator_prepare_with_optimizer( |
| 93 | + mock_model, mock_train_loader, mock_optimizer, mock_transformers_accel |
| 94 | +): |
| 95 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 96 | + accelerator = Accelerator( |
| 97 | + model=mock_model, |
| 98 | + samples_per_gpu=8, |
| 99 | + grad_accum=2, |
| 100 | + train_loader=mock_train_loader, |
| 101 | + save_samples=1000, |
| 102 | + distributed_framework=DistributedBackend.DEEPSPEED, |
| 103 | + deepspeed_cpu_offload_optimizer_ratio=1.0, # Add default value |
| 104 | + ) |
| 105 | + |
| 106 | + # Mock the accelerator's prepare method |
| 107 | + accelerator.accelerator = MagicMock() |
| 108 | + accelerator.accelerator.prepare.return_value = ( |
| 109 | + mock_model.model, |
| 110 | + mock_optimizer, |
| 111 | + mock_train_loader, |
| 112 | + MagicMock(), # lr_scheduler |
| 113 | + ) |
| 114 | + |
| 115 | + accelerator.prepare_with_optimizer( |
| 116 | + optimizer=mock_optimizer, |
| 117 | + lr_scheduler="cosine", |
| 118 | + num_epochs=3, |
| 119 | + num_warmup_steps=100, |
| 120 | + ) |
| 121 | + |
| 122 | + # Verify that prepare was called with the correct arguments |
| 123 | + accelerator.accelerator.prepare.assert_called_once() |
| 124 | + assert accelerator.optimizer == mock_optimizer |
| 125 | + |
| 126 | + |
| 127 | +def test_accelerator_deepspeed_cpu_offload( |
| 128 | + mock_model, mock_train_loader, mock_transformers_accel |
| 129 | +): |
| 130 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 131 | + accelerator = Accelerator( |
| 132 | + model=mock_model, |
| 133 | + samples_per_gpu=8, |
| 134 | + grad_accum=2, |
| 135 | + train_loader=mock_train_loader, |
| 136 | + save_samples=1000, |
| 137 | + distributed_framework=DistributedBackend.DEEPSPEED, |
| 138 | + deepspeed_cpu_offload_optimizer=True, |
| 139 | + deepspeed_cpu_offload_optimizer_pin_memory=True, |
| 140 | + deepspeed_cpu_offload_optimizer_ratio=0.5, |
| 141 | + ) |
| 142 | + |
| 143 | + assert accelerator.deepspeed_cpu_offload_optimizer is True |
| 144 | + assert accelerator.deepspeed_cpu_offload_optimizer_pin_memory is True |
| 145 | + assert accelerator.deepspeed_cpu_offload_optimizer_ratio == 0.5 |
| 146 | + |
| 147 | + |
| 148 | +def test_accelerator_fsdp_cpu_offload( |
| 149 | + mock_model, mock_train_loader, mock_transformers_accel |
| 150 | +): |
| 151 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 152 | + accelerator = Accelerator( |
| 153 | + model=mock_model, |
| 154 | + samples_per_gpu=8, |
| 155 | + grad_accum=2, |
| 156 | + train_loader=mock_train_loader, |
| 157 | + save_samples=1000, |
| 158 | + distributed_framework=DistributedBackend.FSDP, |
| 159 | + fsdp_sharding_strategy="HYBRID_SHARD", |
| 160 | + fsdp_cpu_offload_params=True, |
| 161 | + ) |
| 162 | + |
| 163 | + assert accelerator.fsdp_cpu_offload_params is True |
| 164 | + |
| 165 | + |
| 166 | +def test_accelerator_getattr(mock_model, mock_train_loader, mock_transformers_accel): |
| 167 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 168 | + accelerator = Accelerator( |
| 169 | + model=mock_model, |
| 170 | + samples_per_gpu=8, |
| 171 | + grad_accum=2, |
| 172 | + train_loader=mock_train_loader, |
| 173 | + save_samples=1000, |
| 174 | + distributed_framework=DistributedBackend.DEEPSPEED, |
| 175 | + deepspeed_cpu_offload_optimizer_ratio=1.0, # Add default value |
| 176 | + ) |
| 177 | + |
| 178 | + # Mock a method on the underlying accelerator |
| 179 | + mock_method = MagicMock() |
| 180 | + accelerator.accelerator = MagicMock() |
| 181 | + accelerator.accelerator.some_method = mock_method |
| 182 | + |
| 183 | + # Test that __getattr__ forwards to the underlying accelerator |
| 184 | + result = accelerator.some_method() |
| 185 | + assert result == mock_method.return_value |
| 186 | + |
| 187 | + |
| 188 | +def test_accelerator_setup_deepspeed_classmethod( |
| 189 | + mock_model, mock_train_loader, mock_transformers_accel |
| 190 | +): |
| 191 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 192 | + accelerator = Accelerator.setup_deepspeed( |
| 193 | + model=mock_model, |
| 194 | + samples_per_gpu=8, |
| 195 | + grad_accum=2, |
| 196 | + train_loader=mock_train_loader, |
| 197 | + deepspeed_cpu_offload_optimizer=True, |
| 198 | + deepspeed_cpu_offload_optimizer_pin_memory=True, |
| 199 | + deepspeed_cpu_offload_optimizer_ratio=0.5, |
| 200 | + save_samples=1000, |
| 201 | + ) |
| 202 | + |
| 203 | + assert isinstance(accelerator, Accelerator) |
| 204 | + assert accelerator.distributed_framework == DistributedBackend.DEEPSPEED |
| 205 | + assert accelerator.deepspeed_cpu_offload_optimizer is True |
| 206 | + |
| 207 | + |
| 208 | +def test_accelerator_setup_fsdp_classmethod( |
| 209 | + mock_model, mock_train_loader, mock_transformers_accel |
| 210 | +): |
| 211 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 212 | + accelerator = Accelerator.setup_fsdp( |
| 213 | + model=mock_model, |
| 214 | + samples_per_gpu=8, |
| 215 | + grad_accum=2, |
| 216 | + train_loader=mock_train_loader, |
| 217 | + fsdp_sharding_strategy="HYBRID_SHARD", |
| 218 | + fsdp_cpu_offload_params=True, |
| 219 | + save_samples=1000, |
| 220 | + ) |
| 221 | + |
| 222 | + assert isinstance(accelerator, Accelerator) |
| 223 | + assert accelerator.distributed_framework == DistributedBackend.FSDP |
| 224 | + assert accelerator.fsdp_sharding_strategy == "HYBRID_SHARD" |
| 225 | + assert accelerator.fsdp_cpu_offload_params is True |
| 226 | + |
| 227 | + |
| 228 | +def test_accelerator_with_lora(mock_model, mock_train_loader, mock_transformers_accel): |
| 229 | + # Set up a mock LoRA config |
| 230 | + mock_model.lora_config = MagicMock() |
| 231 | + mock_model.lora_config.target_modules = ["q_proj", "v_proj"] |
| 232 | + |
| 233 | + # Mock the fsdp_auto_wrap_policy function |
| 234 | + mock_wrap_policy = MagicMock() |
| 235 | + with patch("peft.utils.other.fsdp_auto_wrap_policy", return_value=mock_wrap_policy): |
| 236 | + with patch("torch.distributed.get_world_size", return_value=2): |
| 237 | + accelerator = Accelerator( |
| 238 | + model=mock_model, |
| 239 | + samples_per_gpu=8, |
| 240 | + grad_accum=2, |
| 241 | + train_loader=mock_train_loader, |
| 242 | + save_samples=1000, |
| 243 | + distributed_framework=DistributedBackend.FSDP, |
| 244 | + fsdp_sharding_strategy="HYBRID_SHARD", |
| 245 | + ) |
| 246 | + |
| 247 | + # Verify that the accelerator was initialized with LoRA config |
| 248 | + assert accelerator.model.lora_config is not None |
| 249 | + assert accelerator.model.lora_config.target_modules == ["q_proj", "v_proj"] |
0 commit comments