|
| 1 | +# Standard |
| 2 | +from copy import deepcopy |
| 3 | +from typing import Callable, Optional |
| 4 | + |
| 5 | +# Third Party |
| 6 | +from accelerate import Accelerator as TransformersAccel |
| 7 | +from torch.utils.data import DataLoader |
| 8 | +from transformers import get_scheduler |
| 9 | +import torch |
| 10 | + |
| 11 | +# First Party |
| 12 | +from instructlab.training.config import ( # Adjust this import if needed |
| 13 | + DeepSpeedOptions, |
| 14 | + DistributedBackend, |
| 15 | +) |
| 16 | + |
| 17 | +# Local |
| 18 | +from .model import Model |
| 19 | + |
| 20 | + |
| 21 | +class Accelerator: |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + model: Model, |
| 25 | + samples_per_gpu: int, |
| 26 | + grad_accum: int, |
| 27 | + train_loader: DataLoader, |
| 28 | + save_samples: int, |
| 29 | + distributed_framework: DistributedBackend, # dist framework is assoc with Accelerator primarily. |
| 30 | + fsdp_sharding_strategy: Optional[str] = None, |
| 31 | + deepspeed_cpu_offload_optimizer: Optional[bool] = False, |
| 32 | + deepspeed_cpu_offload_optimizer_pin_memory: Optional[bool] = False, |
| 33 | + deepspeed_cpu_offload_optimizer_ratio: Optional[float] = None, |
| 34 | + fsdp_cpu_offload_params: Optional[bool] = False, |
| 35 | + ): |
| 36 | + self.samples_per_gpu = samples_per_gpu |
| 37 | + self.save_samples = save_samples |
| 38 | + self.grad_accum = grad_accum |
| 39 | + self.model = model |
| 40 | + self.distributed_framework = distributed_framework |
| 41 | + self.fsdp_sharding_strategy = fsdp_sharding_strategy |
| 42 | + self.deepspeed_cpu_offload_optimizer = deepspeed_cpu_offload_optimizer |
| 43 | + self.deepspeed_cpu_offload_optimizer_pin_memory = ( |
| 44 | + deepspeed_cpu_offload_optimizer_pin_memory |
| 45 | + ) |
| 46 | + self.train_loader = train_loader |
| 47 | + self.deepspeed_cpu_offload_optimizer_ratio = ( |
| 48 | + deepspeed_cpu_offload_optimizer_ratio |
| 49 | + ) |
| 50 | + self.fsdp_cpu_offload_params = fsdp_cpu_offload_params |
| 51 | + |
| 52 | + if self.distributed_framework == DistributedBackend.DEEPSPEED: |
| 53 | + # Standard |
| 54 | + accel_args = { |
| 55 | + "deepspeed_plugin": self.get_ds_plugin( |
| 56 | + world_size=torch.distributed.get_world_size(), |
| 57 | + samples_per_gpu=samples_per_gpu, |
| 58 | + grad_accum=grad_accum, |
| 59 | + opts=DeepSpeedOptions( |
| 60 | + cpu_offload_optimizer=deepspeed_cpu_offload_optimizer, |
| 61 | + cpu_offload_optimizer_ratio=self.deepspeed_cpu_offload_optimizer_ratio, |
| 62 | + cpu_offload_optimizer_pin_memory=self.deepspeed_cpu_offload_optimizer_pin_memory, |
| 63 | + save_samples=save_samples, |
| 64 | + ), |
| 65 | + ), |
| 66 | + } |
| 67 | + elif self.distributed_framework == DistributedBackend.FSDP: |
| 68 | + accel_args = { |
| 69 | + "fsdp_plugin": self.get_fsdp_config(), |
| 70 | + "mixed_precision": "bf16", |
| 71 | + } |
| 72 | + self.accelerator = TransformersAccel( |
| 73 | + **accel_args, |
| 74 | + ) |
| 75 | + self.accelerator.even_batches = False |
| 76 | + |
| 77 | + new_m = self.accelerator.prepare(model.model) |
| 78 | + self.model.update_model(new_m) |
| 79 | + |
| 80 | + def prepare_with_optimizer( |
| 81 | + self, |
| 82 | + optimizer: torch.optim.Optimizer, |
| 83 | + lr_scheduler: str, |
| 84 | + num_epochs: int, |
| 85 | + num_warmup_steps: int, |
| 86 | + ): |
| 87 | + self.lr_scheduler: Callable |
| 88 | + self.setup_lr_scheduler( |
| 89 | + optimizer=optimizer, |
| 90 | + lr_scheduler=lr_scheduler, |
| 91 | + num_epochs=num_epochs, |
| 92 | + num_warmup_steps=num_warmup_steps, |
| 93 | + ) |
| 94 | + new_m, new_opt, _, self.lr_scheduler = self.accelerator.prepare( |
| 95 | + self.model.model, |
| 96 | + optimizer, |
| 97 | + deepcopy(self.train_loader), |
| 98 | + self.lr_scheduler, |
| 99 | + ) |
| 100 | + self.lr_scheduler.split_batches = True |
| 101 | + self.model.update_model(new_m) |
| 102 | + self.optimizer = new_opt |
| 103 | + |
| 104 | + def setup_lr_scheduler( |
| 105 | + self, |
| 106 | + optimizer: torch.optim.Optimizer, |
| 107 | + lr_scheduler: str, |
| 108 | + num_epochs: int, |
| 109 | + num_warmup_steps: int, |
| 110 | + ): |
| 111 | + self.lr_scheduler = get_scheduler( |
| 112 | + name=lr_scheduler, |
| 113 | + optimizer=optimizer, |
| 114 | + num_warmup_steps=num_warmup_steps, |
| 115 | + num_training_steps=num_epochs * len(self.train_loader) // self.grad_accum, |
| 116 | + ) |
| 117 | + |
| 118 | + def __getattr__(self, name): |
| 119 | + # Forward anything not found to the underlying optimizer |
| 120 | + return getattr(self.accelerator, name) |
| 121 | + |
| 122 | + def get_fsdp_config(self): |
| 123 | + # Standard |
| 124 | + from functools import partial |
| 125 | + |
| 126 | + # Third Party |
| 127 | + from accelerate.utils import FullyShardedDataParallelPlugin |
| 128 | + from peft.utils.other import fsdp_auto_wrap_policy |
| 129 | + from torch.distributed.fsdp import BackwardPrefetch, ShardingStrategy |
| 130 | + from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload |
| 131 | + from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy |
| 132 | + |
| 133 | + # First Party |
| 134 | + from instructlab.training.utils import get_module_class_from_name |
| 135 | + |
| 136 | + is_lora = self.model.lora_config is not None |
| 137 | + block_name = self.model._no_split_modules[0] |
| 138 | + |
| 139 | + wrap_policy = None |
| 140 | + if is_lora > 0: |
| 141 | + wrap_policy = fsdp_auto_wrap_policy(self.model) |
| 142 | + else: |
| 143 | + wrap_policy = partial( |
| 144 | + transformer_auto_wrap_policy, |
| 145 | + transformer_layer_cls={ |
| 146 | + get_module_class_from_name(self.model, block_name), |
| 147 | + }, |
| 148 | + ) |
| 149 | + |
| 150 | + # TODO(osilkin): BACKWARD_POST trades memory utilization for processing time, which is important for systems utilizing LoRA |
| 151 | + # We should have this be configurable in the future. |
| 152 | + prefetch_policy = ( |
| 153 | + BackwardPrefetch.BACKWARD_POST if is_lora else BackwardPrefetch.BACKWARD_PRE |
| 154 | + ) |
| 155 | + fsdp_plugin = FullyShardedDataParallelPlugin( |
| 156 | + auto_wrap_policy=wrap_policy, |
| 157 | + limit_all_gathers=True, |
| 158 | + backward_prefetch=prefetch_policy, |
| 159 | + sharding_strategy=ShardingStrategy[self.fsdp_sharding_strategy], |
| 160 | + cpu_offload=CPUOffload(self.fsdp_cpu_offload_params), |
| 161 | + ) |
| 162 | + |
| 163 | + # `use_orig_params` must be disabled when using LoRA and FSDP together |
| 164 | + # Source: https://huggingface.co/docs/peft/en/accelerate/fsdp#the-important-parts |
| 165 | + if self.model.lora_config is not None: |
| 166 | + fsdp_plugin.use_orig_params = False |
| 167 | + |
| 168 | + return fsdp_plugin |
| 169 | + |
| 170 | + def get_ds_plugin( |
| 171 | + self, world_size, samples_per_gpu, grad_accum, opts: DeepSpeedOptions |
| 172 | + ): |
| 173 | + # Third Party |
| 174 | + from accelerate.utils import DeepSpeedPlugin |
| 175 | + |
| 176 | + ds_config = { |
| 177 | + "train_batch_size": samples_per_gpu * world_size * grad_accum, |
| 178 | + "gradient_accumulation_steps": grad_accum, |
| 179 | + "train_micro_batch_size_per_gpu": samples_per_gpu, |
| 180 | + "steps_per_print": 1, |
| 181 | + "zero_optimization": { |
| 182 | + "stage": 2, |
| 183 | + # this option is only supported with DeepSpeed ZeRO stage 3 |
| 184 | + "offload_param": {"device": "none"}, |
| 185 | + "offload_optimizer": {"device": "none"}, |
| 186 | + }, |
| 187 | + "bf16": {"enabled": True}, |
| 188 | + "gradient_clipping": 1.0, |
| 189 | + "prescale_gradients": False, |
| 190 | + "wall_clock_breakdown": False, |
| 191 | + } |
| 192 | + |
| 193 | + if opts.cpu_offload_optimizer: |
| 194 | + # this only works when the cpu offload optimizer is enabled |
| 195 | + ds_config["zero_optimization"]["offload_optimizer"] = { |
| 196 | + # CPU offloading is the only option available in ZeRO stage 2 |
| 197 | + "device": "cpu", |
| 198 | + "pin_memory": opts.cpu_offload_optimizer_pin_memory, |
| 199 | + "ratio": opts.cpu_offload_optimizer_ratio, |
| 200 | + } |
| 201 | + ds_plugin = DeepSpeedPlugin( |
| 202 | + hf_ds_config=ds_config, |
| 203 | + ) |
| 204 | + return ds_plugin |
| 205 | + |
| 206 | + @classmethod |
| 207 | + def setup_deepspeed( |
| 208 | + cls, |
| 209 | + model: Model, |
| 210 | + samples_per_gpu: int, |
| 211 | + grad_accum: int, |
| 212 | + train_loader: DataLoader, |
| 213 | + deepspeed_cpu_offload_optimizer: Optional[bool], |
| 214 | + deepspeed_cpu_offload_optimizer_pin_memory: Optional[bool], |
| 215 | + deepspeed_cpu_offload_optimizer_ratio: float, |
| 216 | + save_samples: int, |
| 217 | + ): |
| 218 | + return cls( |
| 219 | + model=model, |
| 220 | + grad_accum=grad_accum, |
| 221 | + train_loader=train_loader, |
| 222 | + distributed_framework=DistributedBackend.DEEPSPEED, |
| 223 | + samples_per_gpu=samples_per_gpu, |
| 224 | + deepspeed_cpu_offload_optimizer=deepspeed_cpu_offload_optimizer, |
| 225 | + deepspeed_cpu_offload_optimizer_pin_memory=deepspeed_cpu_offload_optimizer_pin_memory, |
| 226 | + deepspeed_cpu_offload_optimizer_ratio=deepspeed_cpu_offload_optimizer_ratio, |
| 227 | + save_samples=save_samples, |
| 228 | + ) |
| 229 | + |
| 230 | + @classmethod |
| 231 | + def setup_fsdp( |
| 232 | + cls, |
| 233 | + model: Model, |
| 234 | + samples_per_gpu: int, |
| 235 | + grad_accum: int, |
| 236 | + train_loader: DataLoader, |
| 237 | + fsdp_sharding_strategy: Optional[str], |
| 238 | + fsdp_cpu_offload_params: bool, |
| 239 | + save_samples: int, |
| 240 | + ): |
| 241 | + return cls( |
| 242 | + model=model, |
| 243 | + grad_accum=grad_accum, |
| 244 | + train_loader=train_loader, |
| 245 | + distributed_framework=DistributedBackend.FSDP, |
| 246 | + samples_per_gpu=samples_per_gpu, |
| 247 | + fsdp_sharding_strategy=fsdp_sharding_strategy, |
| 248 | + fsdp_cpu_offload_params=fsdp_cpu_offload_params, |
| 249 | + save_samples=save_samples, |
| 250 | + ) |
0 commit comments