Skip to content

Conversation

@mohalisad
Copy link
Contributor

This PR addresses an issue encountered when utilizing uint16 or uint32 datatypes with datasets, followed by attempting to convert these datasets into PyTorch-compatible formats. Currently, doing so results in a TypeError due to incompatible datatype conversion, as illustrated by the following example:

from datasets import Dataset, Sequence, Value, Features

def gen():
    for i in range(100):
        yield {'seq': list(range(i, i + 20))}

ds = Dataset.from_generator(gen, features=Features({'seq': Sequence(feature=Value(dtype='uint16'), length=-1)}))

ds.set_format('torch')

print(ds[0])

This code snippet triggers the following error due to the inability to convert numpy.uint16 arrays to a PyTorch-supported format:

TypeError: can't convert np.ndarray of type numpy.uint16. The only supported types are: float64, float32, float16, complex64, complex128, int64, int32, int16, int8, uint8, and bool.

This PR introduces an automatic mechanism to convert np.uint16 and np.uint32 datatypes to np.int64 for seamless compatibility with PyTorch formats, simplifying workflows and improving developer experience by eliminating the need for manual conversion handling.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good catch ! Thanks for the fix :)

@lhoestq lhoestq merged commit 6e176ef into huggingface:main Mar 1, 2024
@github-actions
Copy link

github-actions bot commented Mar 1, 2024

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004995 / 0.011353 (-0.006357) 0.003230 / 0.011008 (-0.007779) 0.062836 / 0.038508 (0.024328) 0.026684 / 0.023109 (0.003575) 0.249286 / 0.275898 (-0.026612) 0.272936 / 0.323480 (-0.050544) 0.003952 / 0.007986 (-0.004033) 0.002708 / 0.004328 (-0.001620) 0.055346 / 0.004250 (0.051095) 0.040023 / 0.037052 (0.002971) 0.263350 / 0.258489 (0.004860) 0.294727 / 0.293841 (0.000886) 0.027280 / 0.128546 (-0.101266) 0.010273 / 0.075646 (-0.065373) 0.206035 / 0.419271 (-0.213236) 0.035715 / 0.043533 (-0.007818) 0.255474 / 0.255139 (0.000335) 0.273960 / 0.283200 (-0.009240) 0.018563 / 0.141683 (-0.123120) 1.140013 / 1.452155 (-0.312142) 1.188655 / 1.492716 (-0.304062)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091895 / 0.018006 (0.073888) 0.284621 / 0.000490 (0.284131) 0.000213 / 0.000200 (0.000013) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018610 / 0.037411 (-0.018801) 0.061554 / 0.014526 (0.047028) 0.072454 / 0.176557 (-0.104103) 0.120283 / 0.737135 (-0.616853) 0.073744 / 0.296338 (-0.222595)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.288850 / 0.215209 (0.073641) 2.836761 / 2.077655 (0.759107) 1.533407 / 1.504120 (0.029287) 1.409394 / 1.541195 (-0.131801) 1.421667 / 1.468490 (-0.046823) 0.566183 / 4.584777 (-4.018594) 2.390670 / 3.745712 (-1.355043) 2.732031 / 5.269862 (-2.537831) 1.730886 / 4.565676 (-2.834791) 0.064280 / 0.424275 (-0.359995) 0.004959 / 0.007607 (-0.002648) 0.342664 / 0.226044 (0.116619) 3.398969 / 2.268929 (1.130040) 1.887354 / 55.444624 (-53.557270) 1.572955 / 6.876477 (-5.303522) 1.596179 / 2.142072 (-0.545894) 0.645844 / 4.805227 (-4.159383) 0.118050 / 6.500664 (-6.382614) 0.042158 / 0.075469 (-0.033311)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.959170 / 1.841788 (-0.882617) 11.276491 / 8.074308 (3.202183) 9.471198 / 10.191392 (-0.720194) 0.128346 / 0.680424 (-0.552078) 0.013851 / 0.534201 (-0.520350) 0.286125 / 0.579283 (-0.293158) 0.266915 / 0.434364 (-0.167449) 0.332811 / 0.540337 (-0.207526) 0.444780 / 1.386936 (-0.942156)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005665 / 0.011353 (-0.005687) 0.003267 / 0.011008 (-0.007741) 0.050238 / 0.038508 (0.011730) 0.032882 / 0.023109 (0.009773) 0.269320 / 0.275898 (-0.006578) 0.293140 / 0.323480 (-0.030340) 0.004127 / 0.007986 (-0.003858) 0.002728 / 0.004328 (-0.001601) 0.049360 / 0.004250 (0.045109) 0.043764 / 0.037052 (0.006712) 0.291211 / 0.258489 (0.032722) 0.319745 / 0.293841 (0.025904) 0.029371 / 0.128546 (-0.099175) 0.010212 / 0.075646 (-0.065434) 0.059064 / 0.419271 (-0.360207) 0.051148 / 0.043533 (0.007615) 0.276698 / 0.255139 (0.021559) 0.292329 / 0.283200 (0.009129) 0.018349 / 0.141683 (-0.123334) 1.150816 / 1.452155 (-0.301338) 1.184292 / 1.492716 (-0.308425)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091646 / 0.018006 (0.073640) 0.301737 / 0.000490 (0.301247) 0.000214 / 0.000200 (0.000014) 0.000051 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021529 / 0.037411 (-0.015883) 0.075596 / 0.014526 (0.061070) 0.087912 / 0.176557 (-0.088645) 0.125240 / 0.737135 (-0.611895) 0.088035 / 0.296338 (-0.208303)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.305097 / 0.215209 (0.089888) 2.979612 / 2.077655 (0.901957) 1.647009 / 1.504120 (0.142889) 1.520251 / 1.541195 (-0.020944) 1.513361 / 1.468490 (0.044870) 0.571733 / 4.584777 (-4.013044) 2.415587 / 3.745712 (-1.330125) 2.615983 / 5.269862 (-2.653879) 1.732637 / 4.565676 (-2.833039) 0.062830 / 0.424275 (-0.361445) 0.004972 / 0.007607 (-0.002635) 0.348559 / 0.226044 (0.122515) 3.450567 / 2.268929 (1.181639) 1.970743 / 55.444624 (-53.473882) 1.702232 / 6.876477 (-5.174245) 1.799592 / 2.142072 (-0.342480) 0.649477 / 4.805227 (-4.155751) 0.115940 / 6.500664 (-6.384724) 0.040364 / 0.075469 (-0.035105)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.000014 / 1.841788 (-0.841773) 11.937886 / 8.074308 (3.863578) 10.169478 / 10.191392 (-0.021914) 0.153359 / 0.680424 (-0.527064) 0.015205 / 0.534201 (-0.518996) 0.287812 / 0.579283 (-0.291471) 0.278688 / 0.434364 (-0.155676) 0.322831 / 0.540337 (-0.217507) 0.425631 / 1.386936 (-0.961305)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants