Skip to content

Conversation

@ringohoffman
Copy link

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@ringohoffman
Copy link
Author

Hmm these errors look pretty weird... can they be retried?

@mariosasko
Copy link
Collaborator

Hi, thanks for working on this! To fix the errors, you also need to update this file (by adding version.parse("0.3.8").release to the lists)

Copy link
Collaborator

@mariosasko mariosasko left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks!

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you.

@mariosasko mariosasko merged commit 3b21d74 into huggingface:main Jan 30, 2024
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005068 / 0.011353 (-0.006285) 0.003657 / 0.011008 (-0.007351) 0.062914 / 0.038508 (0.024406) 0.027965 / 0.023109 (0.004855) 0.241804 / 0.275898 (-0.034094) 0.268069 / 0.323480 (-0.055411) 0.004066 / 0.007986 (-0.003920) 0.002704 / 0.004328 (-0.001624) 0.048745 / 0.004250 (0.044495) 0.042158 / 0.037052 (0.005106) 0.257670 / 0.258489 (-0.000819) 0.279419 / 0.293841 (-0.014422) 0.027193 / 0.128546 (-0.101353) 0.010379 / 0.075646 (-0.065267) 0.207009 / 0.419271 (-0.212262) 0.035494 / 0.043533 (-0.008039) 0.246025 / 0.255139 (-0.009114) 0.265906 / 0.283200 (-0.017294) 0.017335 / 0.141683 (-0.124348) 1.134052 / 1.452155 (-0.318103) 1.184668 / 1.492716 (-0.308049)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093137 / 0.018006 (0.075130) 0.302279 / 0.000490 (0.301789) 0.000210 / 0.000200 (0.000010) 0.000047 / 0.000054 (-0.000008)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018190 / 0.037411 (-0.019221) 0.061436 / 0.014526 (0.046910) 0.073102 / 0.176557 (-0.103454) 0.119782 / 0.737135 (-0.617354) 0.074292 / 0.296338 (-0.222046)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.285905 / 0.215209 (0.070696) 2.809051 / 2.077655 (0.731397) 1.470305 / 1.504120 (-0.033814) 1.350457 / 1.541195 (-0.190738) 1.349111 / 1.468490 (-0.119379) 0.568277 / 4.584777 (-4.016500) 2.353046 / 3.745712 (-1.392666) 2.805862 / 5.269862 (-2.463999) 1.750275 / 4.565676 (-2.815401) 0.062370 / 0.424275 (-0.361905) 0.004954 / 0.007607 (-0.002653) 0.335609 / 0.226044 (0.109564) 3.367200 / 2.268929 (1.098271) 1.829431 / 55.444624 (-53.615193) 1.545093 / 6.876477 (-5.331384) 1.571107 / 2.142072 (-0.570966) 0.640279 / 4.805227 (-4.164949) 0.116209 / 6.500664 (-6.384455) 0.042308 / 0.075469 (-0.033161)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.982972 / 1.841788 (-0.858816) 11.424370 / 8.074308 (3.350062) 10.427111 / 10.191392 (0.235719) 0.129477 / 0.680424 (-0.550946) 0.014166 / 0.534201 (-0.520035) 0.287597 / 0.579283 (-0.291686) 0.265588 / 0.434364 (-0.168776) 0.324007 / 0.540337 (-0.216330) 0.430766 / 1.386936 (-0.956170)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005347 / 0.011353 (-0.006005) 0.003733 / 0.011008 (-0.007275) 0.049520 / 0.038508 (0.011011) 0.031177 / 0.023109 (0.008068) 0.281854 / 0.275898 (0.005956) 0.300937 / 0.323480 (-0.022543) 0.004385 / 0.007986 (-0.003601) 0.002841 / 0.004328 (-0.001488) 0.048661 / 0.004250 (0.044411) 0.044258 / 0.037052 (0.007205) 0.295651 / 0.258489 (0.037162) 0.322872 / 0.293841 (0.029031) 0.048924 / 0.128546 (-0.079622) 0.010742 / 0.075646 (-0.064905) 0.059327 / 0.419271 (-0.359944) 0.033938 / 0.043533 (-0.009595) 0.282235 / 0.255139 (0.027096) 0.297432 / 0.283200 (0.014233) 0.018295 / 0.141683 (-0.123388) 1.164459 / 1.452155 (-0.287696) 1.214511 / 1.492716 (-0.278205)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091441 / 0.018006 (0.073435) 0.303023 / 0.000490 (0.302533) 0.000211 / 0.000200 (0.000011) 0.000051 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022024 / 0.037411 (-0.015388) 0.075570 / 0.014526 (0.061044) 0.086761 / 0.176557 (-0.089796) 0.126437 / 0.737135 (-0.610698) 0.088354 / 0.296338 (-0.207984)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289360 / 0.215209 (0.074151) 2.816433 / 2.077655 (0.738779) 1.561442 / 1.504120 (0.057322) 1.438168 / 1.541195 (-0.103027) 1.453398 / 1.468490 (-0.015092) 0.579474 / 4.584777 (-4.005303) 2.458640 / 3.745712 (-1.287072) 2.638572 / 5.269862 (-2.631290) 1.725218 / 4.565676 (-2.840458) 0.063550 / 0.424275 (-0.360725) 0.005220 / 0.007607 (-0.002387) 0.338883 / 0.226044 (0.112838) 3.353585 / 2.268929 (1.084656) 1.913186 / 55.444624 (-53.531438) 1.667445 / 6.876477 (-5.209032) 1.740085 / 2.142072 (-0.401987) 0.646369 / 4.805227 (-4.158859) 0.116737 / 6.500664 (-6.383927) 0.041052 / 0.075469 (-0.034417)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.023180 / 1.841788 (-0.818608) 12.078398 / 8.074308 (4.004090) 10.952012 / 10.191392 (0.760620) 0.131335 / 0.680424 (-0.549089) 0.015701 / 0.534201 (-0.518499) 0.289709 / 0.579283 (-0.289574) 0.270495 / 0.434364 (-0.163869) 0.331773 / 0.540337 (-0.208565) 0.417660 / 1.386936 (-0.969276)

@ringohoffman ringohoffman deleted the bump-dill-0.3.8 branch January 30, 2024 16:19
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants