Skip to content

Conversation

@JochenSiegWork
Copy link
Contributor

  • try not to merge DatasetInfos if they're equal

  • fixes losing DatasetInfo during parallel Dataset.map

* try not to merge DatasetInfos if they're equal

* fixes losing DatasetInfo during parallel Dataset.map
@thiagobarbosa
Copy link

@JochenSiegWork fyi, that seems to also affect the trainer.push_to_hub() method, which I guess also needs to parse that DatasetInfo from the kwargs used by push_to_hub.
There is short discussion about it here.
Would be great if you can check if your PR would also fix that!

@JochenSiegWork
Copy link
Contributor Author

@JochenSiegWork fyi, that seems to also affect the trainer.push_to_hub() method, which I guess also needs to parse that DatasetInfo from the kwargs used by push_to_hub. There is short discussion about it here. Would be great if you can check if your PR would also fix that!

Hi @thiagobarbosa, it might be related but I didn't worked with push_to_hub yet. I don't see a minimal example reproducing the specific error in your link. However, if you have a running version producing the error locally you can test it by pulling this PR and run your specific example locally.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the fix !

@lhoestq lhoestq merged commit ca76ca1 into huggingface:main Jan 26, 2024
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004729 / 0.011353 (-0.006624) 0.002983 / 0.011008 (-0.008025) 0.062482 / 0.038508 (0.023974) 0.028406 / 0.023109 (0.005297) 0.255896 / 0.275898 (-0.020002) 0.276423 / 0.323480 (-0.047057) 0.003828 / 0.007986 (-0.004157) 0.002601 / 0.004328 (-0.001728) 0.048954 / 0.004250 (0.044704) 0.040661 / 0.037052 (0.003609) 0.277710 / 0.258489 (0.019221) 0.290360 / 0.293841 (-0.003481) 0.027105 / 0.128546 (-0.101441) 0.010168 / 0.075646 (-0.065478) 0.206835 / 0.419271 (-0.212436) 0.035226 / 0.043533 (-0.008306) 0.262567 / 0.255139 (0.007428) 0.273979 / 0.283200 (-0.009221) 0.017576 / 0.141683 (-0.124106) 1.125588 / 1.452155 (-0.326566) 1.185018 / 1.492716 (-0.307698)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092192 / 0.018006 (0.074186) 0.298350 / 0.000490 (0.297861) 0.000217 / 0.000200 (0.000017) 0.000051 / 0.000054 (-0.000003)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.017925 / 0.037411 (-0.019486) 0.060285 / 0.014526 (0.045759) 0.076579 / 0.176557 (-0.099978) 0.118830 / 0.737135 (-0.618305) 0.073017 / 0.296338 (-0.223322)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.288149 / 0.215209 (0.072940) 2.840004 / 2.077655 (0.762349) 1.495758 / 1.504120 (-0.008361) 1.362338 / 1.541195 (-0.178857) 1.389746 / 1.468490 (-0.078744) 0.576891 / 4.584777 (-4.007886) 2.375724 / 3.745712 (-1.369988) 2.707405 / 5.269862 (-2.562457) 1.719850 / 4.565676 (-2.845826) 0.067055 / 0.424275 (-0.357220) 0.005039 / 0.007607 (-0.002568) 0.346626 / 0.226044 (0.120581) 3.468346 / 2.268929 (1.199418) 1.860686 / 55.444624 (-53.583938) 1.582929 / 6.876477 (-5.293548) 1.613131 / 2.142072 (-0.528941) 0.659022 / 4.805227 (-4.146206) 0.118477 / 6.500664 (-6.382187) 0.041614 / 0.075469 (-0.033855)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.005062 / 1.841788 (-0.836726) 11.203210 / 8.074308 (3.128902) 10.320764 / 10.191392 (0.129372) 0.128541 / 0.680424 (-0.551883) 0.014646 / 0.534201 (-0.519555) 0.285280 / 0.579283 (-0.294003) 0.263613 / 0.434364 (-0.170751) 0.321161 / 0.540337 (-0.219177) 0.420565 / 1.386936 (-0.966371)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005288 / 0.011353 (-0.006065) 0.003048 / 0.011008 (-0.007960) 0.049196 / 0.038508 (0.010688) 0.032104 / 0.023109 (0.008994) 0.279345 / 0.275898 (0.003447) 0.300194 / 0.323480 (-0.023286) 0.004045 / 0.007986 (-0.003941) 0.002594 / 0.004328 (-0.001735) 0.047680 / 0.004250 (0.043430) 0.044294 / 0.037052 (0.007241) 0.292330 / 0.258489 (0.033841) 0.318610 / 0.293841 (0.024769) 0.050417 / 0.128546 (-0.078129) 0.010326 / 0.075646 (-0.065320) 0.057372 / 0.419271 (-0.361899) 0.032985 / 0.043533 (-0.010548) 0.277717 / 0.255139 (0.022579) 0.295692 / 0.283200 (0.012493) 0.017756 / 0.141683 (-0.123927) 1.166277 / 1.452155 (-0.285877) 1.213337 / 1.492716 (-0.279380)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091365 / 0.018006 (0.073359) 0.296261 / 0.000490 (0.295772) 0.000225 / 0.000200 (0.000025) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021973 / 0.037411 (-0.015438) 0.074631 / 0.014526 (0.060106) 0.085645 / 0.176557 (-0.090911) 0.125181 / 0.737135 (-0.611955) 0.086893 / 0.296338 (-0.209445)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.294110 / 0.215209 (0.078901) 2.855531 / 2.077655 (0.777876) 1.583204 / 1.504120 (0.079084) 1.453911 / 1.541195 (-0.087284) 1.467031 / 1.468490 (-0.001460) 0.581214 / 4.584777 (-4.003562) 2.423626 / 3.745712 (-1.322086) 2.736665 / 5.269862 (-2.533197) 1.707000 / 4.565676 (-2.858676) 0.061171 / 0.424275 (-0.363104) 0.004789 / 0.007607 (-0.002818) 0.344546 / 0.226044 (0.118502) 3.530955 / 2.268929 (1.262027) 1.962532 / 55.444624 (-53.482092) 1.670207 / 6.876477 (-5.206270) 1.669041 / 2.142072 (-0.473031) 0.642298 / 4.805227 (-4.162929) 0.115503 / 6.500664 (-6.385161) 0.040729 / 0.075469 (-0.034740)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.973101 / 1.841788 (-0.868687) 11.823894 / 8.074308 (3.749586) 10.664592 / 10.191392 (0.473200) 0.139848 / 0.680424 (-0.540576) 0.015728 / 0.534201 (-0.518473) 0.289135 / 0.579283 (-0.290148) 0.271325 / 0.434364 (-0.163039) 0.332253 / 0.540337 (-0.208085) 0.416982 / 1.386936 (-0.969954)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants