Skip to content

Conversation

@lhoestq
Copy link
Member

@lhoestq lhoestq commented Jan 2, 2024

Enable parallel downloads using multiprocessing when num_proc is passed to load_dataset.

It was enabled for datasets with scripts already (if they passed lists to dl_manager.download) but not for no-script datasets (we pass dicts {split: [list of files]} to dl_manager.download for those ones).

I fixed this by parallelising on the lists contained in the data files dicts when possible.

I also added a context manager stack_multiprocessing_download_progress_bars in DownloadManager to stack the progress bard of the downloads (from cached_path(...) calls). Otherwise the progress bars overlap each other with an annoying flickering effect.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

@lhoestq lhoestq marked this pull request as ready for review January 2, 2024 18:20
Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the useful enhancement.

@lhoestq lhoestq merged commit d26abad into main Jan 3, 2024
@lhoestq lhoestq deleted the fix-multiprocessing-download branch January 3, 2024 13:19
@github-actions
Copy link

github-actions bot commented Jan 3, 2024

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005002 / 0.011353 (-0.006350) 0.003300 / 0.011008 (-0.007708) 0.062509 / 0.038508 (0.024001) 0.029807 / 0.023109 (0.006698) 0.249935 / 0.275898 (-0.025963) 0.264320 / 0.323480 (-0.059160) 0.003790 / 0.007986 (-0.004195) 0.002554 / 0.004328 (-0.001774) 0.048207 / 0.004250 (0.043956) 0.042033 / 0.037052 (0.004981) 0.245725 / 0.258489 (-0.012764) 0.276695 / 0.293841 (-0.017146) 0.026502 / 0.128546 (-0.102044) 0.010379 / 0.075646 (-0.065268) 0.207002 / 0.419271 (-0.212269) 0.034648 / 0.043533 (-0.008885) 0.247957 / 0.255139 (-0.007182) 0.263921 / 0.283200 (-0.019278) 0.017710 / 0.141683 (-0.123973) 1.105851 / 1.452155 (-0.346304) 1.163315 / 1.492716 (-0.329401)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.089842 / 0.018006 (0.071836) 0.352499 / 0.000490 (0.352009) 0.000201 / 0.000200 (0.000001) 0.000054 / 0.000054 (-0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018094 / 0.037411 (-0.019317) 0.060463 / 0.014526 (0.045937) 0.073257 / 0.176557 (-0.103300) 0.119771 / 0.737135 (-0.617364) 0.075210 / 0.296338 (-0.221128)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.288365 / 0.215209 (0.073156) 2.825377 / 2.077655 (0.747722) 1.532436 / 1.504120 (0.028316) 1.393475 / 1.541195 (-0.147719) 1.381859 / 1.468490 (-0.086632) 0.564155 / 4.584777 (-4.020622) 2.398177 / 3.745712 (-1.347535) 2.730271 / 5.269862 (-2.539590) 1.713779 / 4.565676 (-2.851898) 0.062789 / 0.424275 (-0.361486) 0.004991 / 0.007607 (-0.002616) 0.340789 / 0.226044 (0.114744) 3.323543 / 2.268929 (1.054615) 1.861925 / 55.444624 (-53.582700) 1.555181 / 6.876477 (-5.321296) 1.559512 / 2.142072 (-0.582560) 0.634565 / 4.805227 (-4.170663) 0.116529 / 6.500664 (-6.384135) 0.041312 / 0.075469 (-0.034157)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.945739 / 1.841788 (-0.896049) 11.376130 / 8.074308 (3.301822) 10.007752 / 10.191392 (-0.183640) 0.126815 / 0.680424 (-0.553609) 0.013898 / 0.534201 (-0.520303) 0.287438 / 0.579283 (-0.291845) 0.261532 / 0.434364 (-0.172832) 0.320197 / 0.540337 (-0.220140) 0.414444 / 1.386936 (-0.972492)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004994 / 0.011353 (-0.006359) 0.003407 / 0.011008 (-0.007601) 0.049281 / 0.038508 (0.010773) 0.042815 / 0.023109 (0.019706) 0.268291 / 0.275898 (-0.007607) 0.285877 / 0.323480 (-0.037603) 0.004006 / 0.007986 (-0.003980) 0.002607 / 0.004328 (-0.001721) 0.047682 / 0.004250 (0.043431) 0.044281 / 0.037052 (0.007228) 0.268287 / 0.258489 (0.009798) 0.298649 / 0.293841 (0.004808) 0.028607 / 0.128546 (-0.099939) 0.010367 / 0.075646 (-0.065279) 0.057114 / 0.419271 (-0.362158) 0.053753 / 0.043533 (0.010220) 0.269010 / 0.255139 (0.013871) 0.285057 / 0.283200 (0.001858) 0.017693 / 0.141683 (-0.123990) 1.134718 / 1.452155 (-0.317436) 1.186609 / 1.492716 (-0.306107)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091109 / 0.018006 (0.073103) 0.298603 / 0.000490 (0.298113) 0.000216 / 0.000200 (0.000016) 0.000050 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022125 / 0.037411 (-0.015286) 0.076570 / 0.014526 (0.062044) 0.088903 / 0.176557 (-0.087654) 0.126427 / 0.737135 (-0.610708) 0.091001 / 0.296338 (-0.205338)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.300332 / 0.215209 (0.085123) 2.971106 / 2.077655 (0.893452) 1.617886 / 1.504120 (0.113766) 1.476679 / 1.541195 (-0.064516) 1.483750 / 1.468490 (0.015260) 0.582569 / 4.584777 (-4.002208) 2.441804 / 3.745712 (-1.303908) 2.753927 / 5.269862 (-2.515935) 1.733546 / 4.565676 (-2.832130) 0.062653 / 0.424275 (-0.361622) 0.005019 / 0.007607 (-0.002588) 0.355556 / 0.226044 (0.129512) 3.497431 / 2.268929 (1.228503) 1.951711 / 55.444624 (-53.492913) 1.663874 / 6.876477 (-5.212602) 1.657363 / 2.142072 (-0.484709) 0.653488 / 4.805227 (-4.151739) 0.117055 / 6.500664 (-6.383609) 0.040687 / 0.075469 (-0.034782)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.969485 / 1.841788 (-0.872303) 12.064793 / 8.074308 (3.990485) 10.851531 / 10.191392 (0.660139) 0.129060 / 0.680424 (-0.551364) 0.015339 / 0.534201 (-0.518862) 0.287215 / 0.579283 (-0.292069) 0.276545 / 0.434364 (-0.157819) 0.322748 / 0.540337 (-0.217589) 0.421363 / 1.386936 (-0.965573)

@kopyl
Copy link

kopyl commented Jan 6, 2024

@lhoestq
image
it's still not fixed =(

@kopyl
Copy link

kopyl commented Jan 6, 2024

@lhoestq i was thinking uninstalling datasets and then pip install git+https://github.com/huggingface/datasets.git has to fix it. Buuuuut. I'm not sure what's going on actually...

Now instead of showing progress bars one after another it seems to be downloading the dataset way way way faster (like 4 mins instead of 58, thank you very much) but does not show any progress bars related to downloading at all.

image image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants