Skip to content

Conversation

@lhoestq
Copy link
Member

@lhoestq lhoestq commented Dec 18, 2023

I want to improve the error message for datasets like https://huggingface.co/datasets/m-a-p/COIG-CQIA

Cc @albertvillanova @severo is this new error ok ? Or should I use a dedicated error class ?

New:

Traceback (most recent call last):
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1920, in _prepare_split_single
    writer.write_table(table)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/arrow_writer.py", line 574, in write_table
    pa_table = table_cast(pa_table, self._schema)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2322, in table_cast
    return cast_table_to_schema(table, schema)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2276, in cast_table_to_schema
    raise CastError(
datasets.table.CastError: Couldn't cast
instruction: string
other: string
index: string
domain: list<item: string>
  child 0, item: string
output: string
task_type: struct<major: list<item: string>, minor: list<item: string>>
  child 0, major: list<item: string>
      child 0, item: string
  child 1, minor: list<item: string>
      child 0, item: string
task_name_in_eng: string
input: string
to
{'answer_from': Value(dtype='string', id=None), 'instruction': Value(dtype='string', id=None), 'human_verified': Value(dtype='bool', id=None), 'domain': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'output': Value(dtype='string', id=None), 'task_type': {'major': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'minor': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'copyright': Value(dtype='string', id=None), 'input': Value(dtype='string', id=None)}
because column names don't match

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/Users/quentinlhoest/hf/datasets/playground/ttest.py", line 74, in <module>
    load_dataset("m-a-p/COIG-CQIA")
  File "/Users/quentinlhoest/hf/datasets/src/datasets/load.py", line 2529, in load_dataset
    builder_instance.download_and_prepare(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 936, in download_and_prepare
    self._download_and_prepare(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1031, in _download_and_prepare
    self._prepare_split(split_generator, **prepare_split_kwargs)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1791, in _prepare_split
    for job_id, done, content in self._prepare_split_single(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1922, in _prepare_split_single
    raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 3 new columns (other, index, task_name_in_eng) and 3 missing columns (answer_from, copyright, human_verified).

This happened while the json dataset builder was generating data using

hf://datasets/m-a-p/COIG-CQIA/coig_pc/coig_pc_core_sample.json (at revision b7b7ecf290f6515036c7c04bd8537228ac2eb474)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Previously:

Traceback (most recent call last):
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1931, in _prepare_split_single
    writer.write_table(table)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/arrow_writer.py", line 574, in write_table
    pa_table = table_cast(pa_table, self._schema)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2295, in table_cast
    return cast_table_to_schema(table, schema)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/table.py", line 2253, in cast_table_to_schema
    raise ValueError(f"Couldn't cast\n{table.schema}\nto\n{features}\nbecause column names don't match")
ValueError: Couldn't cast
task_type: struct<major: list<item: string>, minor: list<item: string>>
  child 0, major: list<item: string>
      child 0, item: string
  child 1, minor: list<item: string>
      child 0, item: string
other: string
instruction: string
task_name_in_eng: string
domain: list<item: string>
  child 0, item: string
index: string
output: string
input: string
to
{'human_verified': Value(dtype='bool', id=None), 'task_type': {'major': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'minor': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)}, 'answer_from': Value(dtype='string', id=None), 'copyright': Value(dtype='string', id=None), 'instruction': Value(dtype='string', id=None), 'domain': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'output': Value(dtype='string', id=None), 'input': Value(dtype='string', id=None)}
because column names don't match

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/Users/quentinlhoest/hf/datasets/playground/ttest.py", line 74, in <module>
    load_dataset("m-a-p/COIG-CQIA")
  File "/Users/quentinlhoest/hf/datasets/src/datasets/load.py", line 2529, in load_dataset
    builder_instance.download_and_prepare(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 949, in download_and_prepare
    self._download_and_prepare(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1044, in _download_and_prepare
    self._prepare_split(split_generator, **prepare_split_kwargs)
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1804, in _prepare_split
    for job_id, done, content in self._prepare_split_single(
  File "/Users/quentinlhoest/hf/datasets/src/datasets/builder.py", line 1949, in _prepare_split_single
    raise DatasetGenerationError("An error occurred while generating the dataset") from e
datasets.builder.DatasetGenerationError: An error occurred while generating the dataset

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.

Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If a user wants to catch one of the errors, they will have to find out where the errors are defined: datasets.builder.CastErrorDuringDatasetGeneration and datasets.table.CastError, respectively.

I would suggest defining the errors in a single place: datasets.exceptions.

Additionally, I would suggest making them inherit from DatasetsError, so that a user can catch any error specifically generated by the datasets library.

@lhoestq
Copy link
Member Author

lhoestq commented Dec 18, 2023

I created DatatasetGenerationCastError in exceptions.py that inherits from DatasetGenerationError (for backward compatibility) that inherits from DatasetsError.

I also added a help message at the end of the error:

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

@lhoestq lhoestq marked this pull request as ready for review December 18, 2023 17:16
Copy link
Member

@albertvillanova albertvillanova left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks.

@lhoestq lhoestq merged commit 7733241 into main Dec 19, 2023
@lhoestq lhoestq deleted the better-cast-error branch December 19, 2023 09:31
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004991 / 0.011353 (-0.006361) 0.003362 / 0.011008 (-0.007646) 0.062093 / 0.038508 (0.023585) 0.051533 / 0.023109 (0.028424) 0.247508 / 0.275898 (-0.028390) 0.275593 / 0.323480 (-0.047886) 0.003828 / 0.007986 (-0.004158) 0.002573 / 0.004328 (-0.001755) 0.047727 / 0.004250 (0.043477) 0.037029 / 0.037052 (-0.000023) 0.250359 / 0.258489 (-0.008130) 0.282640 / 0.293841 (-0.011201) 0.027853 / 0.128546 (-0.100693) 0.010247 / 0.075646 (-0.065400) 0.206826 / 0.419271 (-0.212445) 0.035837 / 0.043533 (-0.007695) 0.251795 / 0.255139 (-0.003344) 0.275654 / 0.283200 (-0.007545) 0.017722 / 0.141683 (-0.123960) 1.120287 / 1.452155 (-0.331868) 1.203087 / 1.492716 (-0.289630)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092320 / 0.018006 (0.074314) 0.300079 / 0.000490 (0.299589) 0.000211 / 0.000200 (0.000011) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018193 / 0.037411 (-0.019218) 0.061310 / 0.014526 (0.046784) 0.072433 / 0.176557 (-0.104124) 0.119092 / 0.737135 (-0.618043) 0.074044 / 0.296338 (-0.222294)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.297184 / 0.215209 (0.081975) 2.805197 / 2.077655 (0.727543) 1.521326 / 1.504120 (0.017206) 1.374321 / 1.541195 (-0.166874) 1.388767 / 1.468490 (-0.079723) 0.571865 / 4.584777 (-4.012912) 2.385213 / 3.745712 (-1.360499) 2.726840 / 5.269862 (-2.543021) 1.725352 / 4.565676 (-2.840325) 0.063012 / 0.424275 (-0.361263) 0.004911 / 0.007607 (-0.002697) 0.336430 / 0.226044 (0.110385) 3.390616 / 2.268929 (1.121688) 1.846398 / 55.444624 (-53.598227) 1.576797 / 6.876477 (-5.299680) 1.579445 / 2.142072 (-0.562627) 0.652515 / 4.805227 (-4.152712) 0.118393 / 6.500664 (-6.382271) 0.042155 / 0.075469 (-0.033314)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.942269 / 1.841788 (-0.899518) 11.318258 / 8.074308 (3.243950) 10.299948 / 10.191392 (0.108556) 0.136088 / 0.680424 (-0.544336) 0.013682 / 0.534201 (-0.520519) 0.287549 / 0.579283 (-0.291734) 0.258346 / 0.434364 (-0.176018) 0.337146 / 0.540337 (-0.203191) 0.443922 / 1.386936 (-0.943014)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005302 / 0.011353 (-0.006051) 0.003234 / 0.011008 (-0.007774) 0.049159 / 0.038508 (0.010651) 0.050459 / 0.023109 (0.027350) 0.273718 / 0.275898 (-0.002180) 0.296997 / 0.323480 (-0.026483) 0.003948 / 0.007986 (-0.004038) 0.002590 / 0.004328 (-0.001739) 0.048129 / 0.004250 (0.043879) 0.039369 / 0.037052 (0.002317) 0.276469 / 0.258489 (0.017980) 0.306359 / 0.293841 (0.012519) 0.028864 / 0.128546 (-0.099682) 0.010253 / 0.075646 (-0.065394) 0.058264 / 0.419271 (-0.361008) 0.032451 / 0.043533 (-0.011082) 0.277336 / 0.255139 (0.022197) 0.296137 / 0.283200 (0.012937) 0.018094 / 0.141683 (-0.123589) 1.119539 / 1.452155 (-0.332615) 1.163116 / 1.492716 (-0.329600)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092578 / 0.018006 (0.074572) 0.300756 / 0.000490 (0.300267) 0.000222 / 0.000200 (0.000022) 0.000044 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022333 / 0.037411 (-0.015078) 0.076632 / 0.014526 (0.062107) 0.087829 / 0.176557 (-0.088727) 0.127686 / 0.737135 (-0.609449) 0.091314 / 0.296338 (-0.205024)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.297499 / 0.215209 (0.082290) 2.889775 / 2.077655 (0.812120) 1.598976 / 1.504120 (0.094856) 1.478805 / 1.541195 (-0.062389) 1.481818 / 1.468490 (0.013328) 0.557972 / 4.584777 (-4.026804) 2.453248 / 3.745712 (-1.292464) 2.771823 / 5.269862 (-2.498039) 1.721527 / 4.565676 (-2.844150) 0.062786 / 0.424275 (-0.361489) 0.005298 / 0.007607 (-0.002309) 0.346660 / 0.226044 (0.120615) 3.412262 / 2.268929 (1.143334) 1.940240 / 55.444624 (-53.504384) 1.654015 / 6.876477 (-5.222461) 1.652039 / 2.142072 (-0.490034) 0.636870 / 4.805227 (-4.168357) 0.116213 / 6.500664 (-6.384451) 0.040937 / 0.075469 (-0.034532)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.001605 / 1.841788 (-0.840183) 11.986592 / 8.074308 (3.912284) 10.231288 / 10.191392 (0.039896) 0.130242 / 0.680424 (-0.550182) 0.015764 / 0.534201 (-0.518437) 0.289257 / 0.579283 (-0.290026) 0.275996 / 0.434364 (-0.158368) 0.323089 / 0.540337 (-0.217248) 0.556383 / 1.386936 (-0.830553)

@albertvillanova albertvillanova mentioned this pull request Jun 27, 2024
3 tasks
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants