Skip to content

Conversation

@mariosasko
Copy link
Collaborator

When it fails, preupload_lfs_files throws a RuntimeError error and chains the original HTTP error. This PR modifies the retry mechanism's error handling to account for that.

Fix #6392

@mariosasko
Copy link
Collaborator Author

@Wauplin Maybe 504 should be added to the retry_on_status_codes tuple here to guard against #3872

@Wauplin
Copy link
Contributor

Wauplin commented Nov 30, 2023

We could but I'm not sure to have witness a 504 on S3 before. The issue reported in #3872 is a 504 on the /upload endpoint on the Hub and this is not an endpoint that is retried on this line.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005110 / 0.011353 (-0.006243) 0.003307 / 0.011008 (-0.007701) 0.062601 / 0.038508 (0.024093) 0.049644 / 0.023109 (0.026534) 0.243195 / 0.275898 (-0.032703) 0.273543 / 0.323480 (-0.049936) 0.003862 / 0.007986 (-0.004123) 0.002624 / 0.004328 (-0.001705) 0.048273 / 0.004250 (0.044023) 0.037820 / 0.037052 (0.000768) 0.249134 / 0.258489 (-0.009355) 0.319359 / 0.293841 (0.025518) 0.027816 / 0.128546 (-0.100730) 0.010422 / 0.075646 (-0.065225) 0.206607 / 0.419271 (-0.212665) 0.035719 / 0.043533 (-0.007814) 0.250300 / 0.255139 (-0.004839) 0.290377 / 0.283200 (0.007177) 0.018459 / 0.141683 (-0.123224) 1.114664 / 1.452155 (-0.337490) 1.171429 / 1.492716 (-0.321288)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091483 / 0.018006 (0.073477) 0.302770 / 0.000490 (0.302281) 0.000203 / 0.000200 (0.000003) 0.000047 / 0.000054 (-0.000007)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018870 / 0.037411 (-0.018541) 0.062692 / 0.014526 (0.048166) 0.075381 / 0.176557 (-0.101176) 0.122338 / 0.737135 (-0.614797) 0.075608 / 0.296338 (-0.220730)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.288115 / 0.215209 (0.072906) 2.816183 / 2.077655 (0.738528) 1.535601 / 1.504120 (0.031481) 1.409546 / 1.541195 (-0.131648) 1.438569 / 1.468490 (-0.029921) 0.561797 / 4.584777 (-4.022980) 2.373921 / 3.745712 (-1.371791) 2.739437 / 5.269862 (-2.530424) 1.750921 / 4.565676 (-2.814755) 0.062114 / 0.424275 (-0.362161) 0.004965 / 0.007607 (-0.002642) 0.348614 / 0.226044 (0.122569) 3.519631 / 2.268929 (1.250703) 1.910797 / 55.444624 (-53.533827) 1.610541 / 6.876477 (-5.265936) 1.617972 / 2.142072 (-0.524100) 0.639421 / 4.805227 (-4.165806) 0.117371 / 6.500664 (-6.383293) 0.041851 / 0.075469 (-0.033618)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.945563 / 1.841788 (-0.896224) 11.362399 / 8.074308 (3.288090) 10.468468 / 10.191392 (0.277075) 0.128925 / 0.680424 (-0.551499) 0.013892 / 0.534201 (-0.520309) 0.285487 / 0.579283 (-0.293796) 0.269295 / 0.434364 (-0.165069) 0.324843 / 0.540337 (-0.215495) 0.438452 / 1.386936 (-0.948484)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005303 / 0.011353 (-0.006050) 0.003162 / 0.011008 (-0.007846) 0.048177 / 0.038508 (0.009669) 0.048708 / 0.023109 (0.025599) 0.271663 / 0.275898 (-0.004235) 0.289948 / 0.323480 (-0.033532) 0.003955 / 0.007986 (-0.004030) 0.002616 / 0.004328 (-0.001713) 0.047510 / 0.004250 (0.043260) 0.039938 / 0.037052 (0.002886) 0.277449 / 0.258489 (0.018960) 0.300315 / 0.293841 (0.006474) 0.029263 / 0.128546 (-0.099283) 0.010403 / 0.075646 (-0.065244) 0.056682 / 0.419271 (-0.362590) 0.032757 / 0.043533 (-0.010776) 0.273291 / 0.255139 (0.018152) 0.289023 / 0.283200 (0.005824) 0.017843 / 0.141683 (-0.123840) 1.124762 / 1.452155 (-0.327393) 1.176646 / 1.492716 (-0.316070)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.004568 / 0.018006 (-0.013438) 0.300715 / 0.000490 (0.300225) 0.000212 / 0.000200 (0.000012) 0.000049 / 0.000054 (-0.000005)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021528 / 0.037411 (-0.015883) 0.068317 / 0.014526 (0.053792) 0.081358 / 0.176557 (-0.095199) 0.119297 / 0.737135 (-0.617838) 0.082445 / 0.296338 (-0.213893)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289681 / 0.215209 (0.074472) 2.843862 / 2.077655 (0.766208) 1.574257 / 1.504120 (0.070137) 1.454026 / 1.541195 (-0.087169) 1.478379 / 1.468490 (0.009889) 0.558259 / 4.584777 (-4.026518) 2.513261 / 3.745712 (-1.232451) 2.759751 / 5.269862 (-2.510111) 1.730335 / 4.565676 (-2.835341) 0.063805 / 0.424275 (-0.360470) 0.004991 / 0.007607 (-0.002616) 0.346586 / 0.226044 (0.120542) 3.369163 / 2.268929 (1.100234) 1.934734 / 55.444624 (-53.509890) 1.658864 / 6.876477 (-5.217613) 1.645621 / 2.142072 (-0.496452) 0.636633 / 4.805227 (-4.168594) 0.116839 / 6.500664 (-6.383825) 0.040863 / 0.075469 (-0.034606)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.960925 / 1.841788 (-0.880863) 11.769189 / 8.074308 (3.694881) 10.713662 / 10.191392 (0.522270) 0.140510 / 0.680424 (-0.539914) 0.015424 / 0.534201 (-0.518777) 0.288039 / 0.579283 (-0.291244) 0.277623 / 0.434364 (-0.156741) 0.322622 / 0.540337 (-0.217716) 0.539805 / 1.386936 (-0.847131)

@mariosasko mariosasko marked this pull request as ready for review November 30, 2023 15:53
@mariosasko mariosasko requested a review from lhoestq November 30, 2023 15:53
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005501 / 0.011353 (-0.005852) 0.003754 / 0.011008 (-0.007254) 0.062628 / 0.038508 (0.024120) 0.059951 / 0.023109 (0.036842) 0.254851 / 0.275898 (-0.021047) 0.272133 / 0.323480 (-0.051347) 0.003962 / 0.007986 (-0.004024) 0.002759 / 0.004328 (-0.001569) 0.048412 / 0.004250 (0.044161) 0.039349 / 0.037052 (0.002297) 0.253093 / 0.258489 (-0.005397) 0.287048 / 0.293841 (-0.006793) 0.027197 / 0.128546 (-0.101349) 0.010828 / 0.075646 (-0.064819) 0.206371 / 0.419271 (-0.212901) 0.035881 / 0.043533 (-0.007652) 0.254905 / 0.255139 (-0.000234) 0.273819 / 0.283200 (-0.009381) 0.018041 / 0.141683 (-0.123642) 1.103970 / 1.452155 (-0.348185) 1.166340 / 1.492716 (-0.326377)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093196 / 0.018006 (0.075190) 0.302690 / 0.000490 (0.302200) 0.000219 / 0.000200 (0.000019) 0.000045 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019552 / 0.037411 (-0.017860) 0.062337 / 0.014526 (0.047811) 0.074070 / 0.176557 (-0.102486) 0.120998 / 0.737135 (-0.616137) 0.076265 / 0.296338 (-0.220074)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.272637 / 0.215209 (0.057427) 2.693350 / 2.077655 (0.615696) 1.398020 / 1.504120 (-0.106100) 1.285706 / 1.541195 (-0.255488) 1.342810 / 1.468490 (-0.125680) 0.565378 / 4.584777 (-4.019399) 2.390131 / 3.745712 (-1.355581) 2.892137 / 5.269862 (-2.377725) 1.819840 / 4.565676 (-2.745836) 0.062789 / 0.424275 (-0.361486) 0.004920 / 0.007607 (-0.002687) 0.329281 / 0.226044 (0.103237) 3.261664 / 2.268929 (0.992735) 1.775102 / 55.444624 (-53.669523) 1.514341 / 6.876477 (-5.362136) 1.530805 / 2.142072 (-0.611267) 0.641009 / 4.805227 (-4.164218) 0.118626 / 6.500664 (-6.382038) 0.042732 / 0.075469 (-0.032737)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.933179 / 1.841788 (-0.908609) 12.085247 / 8.074308 (4.010939) 10.541596 / 10.191392 (0.350204) 0.140141 / 0.680424 (-0.540283) 0.014646 / 0.534201 (-0.519555) 0.289640 / 0.579283 (-0.289643) 0.281042 / 0.434364 (-0.153322) 0.326462 / 0.540337 (-0.213876) 0.441981 / 1.386936 (-0.944955)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005259 / 0.011353 (-0.006094) 0.003766 / 0.011008 (-0.007242) 0.048782 / 0.038508 (0.010273) 0.064946 / 0.023109 (0.041836) 0.264529 / 0.275898 (-0.011369) 0.289675 / 0.323480 (-0.033805) 0.004057 / 0.007986 (-0.003928) 0.002805 / 0.004328 (-0.001523) 0.047709 / 0.004250 (0.043459) 0.041149 / 0.037052 (0.004096) 0.271254 / 0.258489 (0.012765) 0.296685 / 0.293841 (0.002844) 0.029486 / 0.128546 (-0.099060) 0.010608 / 0.075646 (-0.065038) 0.056392 / 0.419271 (-0.362879) 0.033181 / 0.043533 (-0.010352) 0.267029 / 0.255139 (0.011890) 0.284987 / 0.283200 (0.001787) 0.018045 / 0.141683 (-0.123637) 1.137358 / 1.452155 (-0.314796) 1.184007 / 1.492716 (-0.308709)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.004603 / 0.018006 (-0.013403) 0.303901 / 0.000490 (0.303411) 0.000225 / 0.000200 (0.000025) 0.000055 / 0.000054 (0.000000)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021957 / 0.037411 (-0.015454) 0.069427 / 0.014526 (0.054901) 0.082394 / 0.176557 (-0.094163) 0.120745 / 0.737135 (-0.616390) 0.084571 / 0.296338 (-0.211767)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.292832 / 0.215209 (0.077623) 2.824295 / 2.077655 (0.746640) 1.563273 / 1.504120 (0.059153) 1.440202 / 1.541195 (-0.100992) 1.489810 / 1.468490 (0.021320) 0.561120 / 4.584777 (-4.023657) 2.439045 / 3.745712 (-1.306667) 2.867139 / 5.269862 (-2.402722) 1.793812 / 4.565676 (-2.771865) 0.062797 / 0.424275 (-0.361478) 0.005033 / 0.007607 (-0.002574) 0.343648 / 0.226044 (0.117604) 3.432285 / 2.268929 (1.163357) 1.918175 / 55.444624 (-53.526449) 1.637245 / 6.876477 (-5.239232) 1.709246 / 2.142072 (-0.432826) 0.634744 / 4.805227 (-4.170483) 0.115782 / 6.500664 (-6.384882) 0.041228 / 0.075469 (-0.034241)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.962369 / 1.841788 (-0.879418) 12.750819 / 8.074308 (4.676511) 10.927356 / 10.191392 (0.735964) 0.143454 / 0.680424 (-0.536970) 0.015348 / 0.534201 (-0.518853) 0.291207 / 0.579283 (-0.288076) 0.276924 / 0.434364 (-0.157440) 0.327287 / 0.540337 (-0.213050) 0.577439 / 1.386936 (-0.809497)

@mariosasko mariosasko requested a review from lhoestq December 1, 2023 15:31
Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM !

@mariosasko mariosasko merged commit 7602018 into main Dec 1, 2023
@mariosasko mariosasko deleted the upload-hub-retries branch December 1, 2023 17:51
@github-actions
Copy link

github-actions bot commented Dec 1, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005070 / 0.011353 (-0.006283) 0.003475 / 0.011008 (-0.007533) 0.061985 / 0.038508 (0.023477) 0.048539 / 0.023109 (0.025430) 0.229935 / 0.275898 (-0.045963) 0.255247 / 0.323480 (-0.068233) 0.003919 / 0.007986 (-0.004066) 0.002664 / 0.004328 (-0.001664) 0.048892 / 0.004250 (0.044642) 0.037381 / 0.037052 (0.000328) 0.238517 / 0.258489 (-0.019972) 0.284069 / 0.293841 (-0.009772) 0.027513 / 0.128546 (-0.101033) 0.010778 / 0.075646 (-0.064868) 0.205004 / 0.419271 (-0.214268) 0.035553 / 0.043533 (-0.007980) 0.230117 / 0.255139 (-0.025022) 0.251150 / 0.283200 (-0.032050) 0.017951 / 0.141683 (-0.123732) 1.145548 / 1.452155 (-0.306607) 1.191659 / 1.492716 (-0.301057)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092335 / 0.018006 (0.074329) 0.300264 / 0.000490 (0.299774) 0.000206 / 0.000200 (0.000006) 0.000050 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018608 / 0.037411 (-0.018804) 0.060376 / 0.014526 (0.045850) 0.073551 / 0.176557 (-0.103006) 0.118840 / 0.737135 (-0.618295) 0.074447 / 0.296338 (-0.221892)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.287033 / 0.215209 (0.071824) 2.770958 / 2.077655 (0.693303) 1.443986 / 1.504120 (-0.060134) 1.314627 / 1.541195 (-0.226567) 1.342287 / 1.468490 (-0.126203) 0.559607 / 4.584777 (-4.025170) 2.409678 / 3.745712 (-1.336034) 2.772566 / 5.269862 (-2.497295) 1.743511 / 4.565676 (-2.822165) 0.062277 / 0.424275 (-0.361998) 0.004952 / 0.007607 (-0.002655) 0.330581 / 0.226044 (0.104537) 3.280385 / 2.268929 (1.011456) 1.809599 / 55.444624 (-53.635025) 1.532186 / 6.876477 (-5.344290) 1.529689 / 2.142072 (-0.612383) 0.645213 / 4.805227 (-4.160014) 0.117564 / 6.500664 (-6.383100) 0.041657 / 0.075469 (-0.033812)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.943912 / 1.841788 (-0.897876) 11.414317 / 8.074308 (3.340009) 10.394915 / 10.191392 (0.203523) 0.129271 / 0.680424 (-0.551153) 0.013934 / 0.534201 (-0.520267) 0.288217 / 0.579283 (-0.291066) 0.267171 / 0.434364 (-0.167193) 0.327112 / 0.540337 (-0.213225) 0.446680 / 1.386936 (-0.940256)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005200 / 0.011353 (-0.006152) 0.003453 / 0.011008 (-0.007555) 0.048736 / 0.038508 (0.010228) 0.051073 / 0.023109 (0.027964) 0.276591 / 0.275898 (0.000693) 0.294495 / 0.323480 (-0.028985) 0.004069 / 0.007986 (-0.003917) 0.002945 / 0.004328 (-0.001383) 0.047090 / 0.004250 (0.042839) 0.040445 / 0.037052 (0.003393) 0.278464 / 0.258489 (0.019975) 0.304020 / 0.293841 (0.010179) 0.028811 / 0.128546 (-0.099736) 0.010388 / 0.075646 (-0.065259) 0.057214 / 0.419271 (-0.362057) 0.032588 / 0.043533 (-0.010945) 0.277694 / 0.255139 (0.022555) 0.294979 / 0.283200 (0.011779) 0.018384 / 0.141683 (-0.123299) 1.162332 / 1.452155 (-0.289822) 1.188355 / 1.492716 (-0.304361)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.090501 / 0.018006 (0.072495) 0.303122 / 0.000490 (0.302632) 0.000222 / 0.000200 (0.000022) 0.000053 / 0.000054 (-0.000001)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022536 / 0.037411 (-0.014876) 0.068452 / 0.014526 (0.053926) 0.080932 / 0.176557 (-0.095625) 0.119185 / 0.737135 (-0.617950) 0.081513 / 0.296338 (-0.214825)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.291522 / 0.215209 (0.076313) 2.849467 / 2.077655 (0.771812) 1.597395 / 1.504120 (0.093275) 1.512872 / 1.541195 (-0.028323) 1.488144 / 1.468490 (0.019654) 0.572436 / 4.584777 (-4.012341) 2.440129 / 3.745712 (-1.305583) 2.788045 / 5.269862 (-2.481817) 1.754246 / 4.565676 (-2.811430) 0.066706 / 0.424275 (-0.357569) 0.005035 / 0.007607 (-0.002573) 0.336621 / 0.226044 (0.110576) 3.322820 / 2.268929 (1.053891) 1.940494 / 55.444624 (-53.504130) 1.670022 / 6.876477 (-5.206454) 1.666353 / 2.142072 (-0.475720) 0.646180 / 4.805227 (-4.159047) 0.116676 / 6.500664 (-6.383988) 0.040559 / 0.075469 (-0.034910)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.971396 / 1.841788 (-0.870392) 11.782426 / 8.074308 (3.708118) 10.672034 / 10.191392 (0.480642) 0.137658 / 0.680424 (-0.542766) 0.016210 / 0.534201 (-0.517991) 0.288302 / 0.579283 (-0.290981) 0.280775 / 0.434364 (-0.153589) 0.326962 / 0.540337 (-0.213375) 0.558511 / 1.386936 (-0.828425)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

push_to_hub is not robust to hub closing connection

4 participants