Skip to content

Conversation

@mariosasko
Copy link
Collaborator

@mariosasko mariosasko commented Nov 27, 2023

Refactor the dill logic to make it easier to maintain (and fix some issues along the way)

It makes the following improvements to the serialization API:

  • consistent order of a dict's keys
  • support for hashing torch.compile-ed modules and functions
  • deprecates datasets.fingerprint.hashregister as the hashregister-ed reducers are never invoked anyways (does not support nested data as pickle/dill do)

TODO: optimize hashing of pa.Table and datasets.table.Table The pa_array.to_string approach is faster for large arrays because it outputs the first 10 and last 10 elements (by default). The problem is that this can produce identical hashes for non-identical arrays if their differing elements get ellipsed...

Fix #6440, fix #5839

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005490 / 0.011353 (-0.005863) 0.003554 / 0.011008 (-0.007454) 0.062183 / 0.038508 (0.023675) 0.053093 / 0.023109 (0.029984) 0.245370 / 0.275898 (-0.030528) 0.271637 / 0.323480 (-0.051842) 0.002997 / 0.007986 (-0.004989) 0.002811 / 0.004328 (-0.001517) 0.047874 / 0.004250 (0.043623) 0.039673 / 0.037052 (0.002620) 0.253219 / 0.258489 (-0.005271) 0.280438 / 0.293841 (-0.013403) 0.028393 / 0.128546 (-0.100153) 0.010914 / 0.075646 (-0.064732) 0.207491 / 0.419271 (-0.211781) 0.037565 / 0.043533 (-0.005968) 0.252382 / 0.255139 (-0.002757) 0.272204 / 0.283200 (-0.010995) 0.019007 / 0.141683 (-0.122676) 1.099767 / 1.452155 (-0.352388) 1.173220 / 1.492716 (-0.319496)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.098777 / 0.018006 (0.080771) 0.325912 / 0.000490 (0.325422) 0.000214 / 0.000200 (0.000014) 0.000051 / 0.000054 (-0.000003)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018815 / 0.037411 (-0.018596) 0.070031 / 0.014526 (0.055506) 0.075395 / 0.176557 (-0.101162) 0.122633 / 0.737135 (-0.614502) 0.077621 / 0.296338 (-0.218718)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.290830 / 0.215209 (0.075621) 2.869214 / 2.077655 (0.791559) 1.507337 / 1.504120 (0.003217) 1.351391 / 1.541195 (-0.189804) 1.386642 / 1.468490 (-0.081848) 0.570318 / 4.584777 (-4.014459) 2.423442 / 3.745712 (-1.322270) 2.897812 / 5.269862 (-2.372050) 1.796458 / 4.565676 (-2.769219) 0.063649 / 0.424275 (-0.360626) 0.005038 / 0.007607 (-0.002570) 0.357819 / 0.226044 (0.131774) 3.535478 / 2.268929 (1.266549) 1.831764 / 55.444624 (-53.612861) 1.545035 / 6.876477 (-5.331442) 1.585919 / 2.142072 (-0.556154) 0.643333 / 4.805227 (-4.161894) 0.120319 / 6.500664 (-6.380345) 0.043031 / 0.075469 (-0.032438)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.981155 / 1.841788 (-0.860633) 12.136069 / 8.074308 (4.061760) 10.579923 / 10.191392 (0.388531) 0.152963 / 0.680424 (-0.527461) 0.014783 / 0.534201 (-0.519418) 0.289177 / 0.579283 (-0.290106) 0.271784 / 0.434364 (-0.162580) 0.322381 / 0.540337 (-0.217956) 0.420034 / 1.386936 (-0.966902)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005315 / 0.011353 (-0.006038) 0.003584 / 0.011008 (-0.007424) 0.048596 / 0.038508 (0.010088) 0.055940 / 0.023109 (0.032830) 0.277687 / 0.275898 (0.001789) 0.301545 / 0.323480 (-0.021935) 0.004150 / 0.007986 (-0.003836) 0.002699 / 0.004328 (-0.001629) 0.047661 / 0.004250 (0.043410) 0.040618 / 0.037052 (0.003565) 0.279173 / 0.258489 (0.020684) 0.306105 / 0.293841 (0.012264) 0.030099 / 0.128546 (-0.098447) 0.010784 / 0.075646 (-0.064862) 0.057418 / 0.419271 (-0.361853) 0.032632 / 0.043533 (-0.010901) 0.276064 / 0.255139 (0.020925) 0.307194 / 0.283200 (0.023995) 0.017416 / 0.141683 (-0.124267) 1.107749 / 1.452155 (-0.344406) 1.161104 / 1.492716 (-0.331612)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.102395 / 0.018006 (0.084389) 0.316933 / 0.000490 (0.316443) 0.000246 / 0.000200 (0.000046) 0.000042 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022833 / 0.037411 (-0.014579) 0.069372 / 0.014526 (0.054846) 0.082139 / 0.176557 (-0.094418) 0.121666 / 0.737135 (-0.615469) 0.084039 / 0.296338 (-0.212300)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.298775 / 0.215209 (0.083566) 2.973898 / 2.077655 (0.896244) 1.614436 / 1.504120 (0.110316) 1.476112 / 1.541195 (-0.065083) 1.502031 / 1.468490 (0.033541) 0.580626 / 4.584777 (-4.004151) 2.493428 / 3.745712 (-1.252285) 2.931050 / 5.269862 (-2.338811) 1.823603 / 4.565676 (-2.742073) 0.064736 / 0.424275 (-0.359539) 0.004963 / 0.007607 (-0.002644) 0.355096 / 0.226044 (0.129052) 3.522801 / 2.268929 (1.253872) 1.968690 / 55.444624 (-53.475935) 1.698624 / 6.876477 (-5.177853) 1.714166 / 2.142072 (-0.427906) 0.681734 / 4.805227 (-4.123493) 0.118940 / 6.500664 (-6.381724) 0.041960 / 0.075469 (-0.033509)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.985311 / 1.841788 (-0.856476) 12.785393 / 8.074308 (4.711085) 11.289459 / 10.191392 (1.098067) 0.145297 / 0.680424 (-0.535127) 0.016125 / 0.534201 (-0.518076) 0.289445 / 0.579283 (-0.289838) 0.278974 / 0.434364 (-0.155390) 0.322456 / 0.540337 (-0.217881) 0.418218 / 1.386936 (-0.968718)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Nov 27, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005142 / 0.011353 (-0.006211) 0.004180 / 0.011008 (-0.006829) 0.062647 / 0.038508 (0.024139) 0.055072 / 0.023109 (0.031962) 0.254681 / 0.275898 (-0.021217) 0.282650 / 0.323480 (-0.040830) 0.003950 / 0.007986 (-0.004035) 0.002862 / 0.004328 (-0.001466) 0.048420 / 0.004250 (0.044170) 0.038447 / 0.037052 (0.001394) 0.258160 / 0.258489 (-0.000329) 0.288596 / 0.293841 (-0.005245) 0.027898 / 0.128546 (-0.100648) 0.011165 / 0.075646 (-0.064482) 0.206844 / 0.419271 (-0.212427) 0.036312 / 0.043533 (-0.007221) 0.257957 / 0.255139 (0.002819) 0.277387 / 0.283200 (-0.005812) 0.018205 / 0.141683 (-0.123478) 1.109870 / 1.452155 (-0.342284) 1.175005 / 1.492716 (-0.317712)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.096692 / 0.018006 (0.078686) 0.307463 / 0.000490 (0.306973) 0.000218 / 0.000200 (0.000018) 0.000042 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018602 / 0.037411 (-0.018809) 0.061489 / 0.014526 (0.046964) 0.072936 / 0.176557 (-0.103620) 0.119863 / 0.737135 (-0.617272) 0.073983 / 0.296338 (-0.222355)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.291444 / 0.215209 (0.076235) 2.849024 / 2.077655 (0.771369) 1.533121 / 1.504120 (0.029001) 1.402148 / 1.541195 (-0.139046) 1.406397 / 1.468490 (-0.062094) 0.564241 / 4.584777 (-4.020536) 2.402052 / 3.745712 (-1.343660) 2.772639 / 5.269862 (-2.497223) 1.732342 / 4.565676 (-2.833334) 0.062361 / 0.424275 (-0.361914) 0.004945 / 0.007607 (-0.002662) 0.355841 / 0.226044 (0.129797) 3.426931 / 2.268929 (1.158003) 1.865412 / 55.444624 (-53.579212) 1.592628 / 6.876477 (-5.283849) 1.662364 / 2.142072 (-0.479708) 0.653278 / 4.805227 (-4.151949) 0.118626 / 6.500664 (-6.382038) 0.042961 / 0.075469 (-0.032508)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.956279 / 1.841788 (-0.885509) 11.635540 / 8.074308 (3.561232) 10.719590 / 10.191392 (0.528198) 0.130015 / 0.680424 (-0.550409) 0.014424 / 0.534201 (-0.519777) 0.288135 / 0.579283 (-0.291148) 0.270819 / 0.434364 (-0.163545) 0.320238 / 0.540337 (-0.220099) 0.421044 / 1.386936 (-0.965892)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005201 / 0.011353 (-0.006152) 0.003467 / 0.011008 (-0.007541) 0.048939 / 0.038508 (0.010431) 0.051841 / 0.023109 (0.028732) 0.273708 / 0.275898 (-0.002190) 0.293491 / 0.323480 (-0.029988) 0.004830 / 0.007986 (-0.003156) 0.002696 / 0.004328 (-0.001632) 0.047727 / 0.004250 (0.043476) 0.041319 / 0.037052 (0.004266) 0.273837 / 0.258489 (0.015348) 0.309860 / 0.293841 (0.016019) 0.029054 / 0.128546 (-0.099492) 0.010410 / 0.075646 (-0.065237) 0.058139 / 0.419271 (-0.361133) 0.032682 / 0.043533 (-0.010850) 0.273244 / 0.255139 (0.018105) 0.291579 / 0.283200 (0.008380) 0.018262 / 0.141683 (-0.123421) 1.144590 / 1.452155 (-0.307565) 1.202474 / 1.492716 (-0.290243)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.097110 / 0.018006 (0.079104) 0.307344 / 0.000490 (0.306854) 0.000229 / 0.000200 (0.000029) 0.000045 / 0.000054 (-0.000009)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022263 / 0.037411 (-0.015148) 0.070140 / 0.014526 (0.055614) 0.081251 / 0.176557 (-0.095306) 0.120839 / 0.737135 (-0.616297) 0.083312 / 0.296338 (-0.213026)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.297381 / 0.215209 (0.082172) 2.895530 / 2.077655 (0.817875) 1.608442 / 1.504120 (0.104322) 1.476237 / 1.541195 (-0.064958) 1.491306 / 1.468490 (0.022816) 0.567272 / 4.584777 (-4.017505) 2.463543 / 3.745712 (-1.282170) 2.814764 / 5.269862 (-2.455098) 1.725845 / 4.565676 (-2.839831) 0.064149 / 0.424275 (-0.360126) 0.004953 / 0.007607 (-0.002654) 0.359629 / 0.226044 (0.133585) 3.482414 / 2.268929 (1.213486) 1.949897 / 55.444624 (-53.494727) 1.677383 / 6.876477 (-5.199094) 1.683655 / 2.142072 (-0.458418) 0.645671 / 4.805227 (-4.159557) 0.115612 / 6.500664 (-6.385053) 0.041013 / 0.075469 (-0.034456)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.967843 / 1.841788 (-0.873945) 12.376877 / 8.074308 (4.302569) 10.988174 / 10.191392 (0.796782) 0.134660 / 0.680424 (-0.545764) 0.015801 / 0.534201 (-0.518400) 0.288699 / 0.579283 (-0.290584) 0.284887 / 0.434364 (-0.149477) 0.322000 / 0.540337 (-0.218337) 0.412360 / 1.386936 (-0.974576)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005407 / 0.011353 (-0.005946) 0.003496 / 0.011008 (-0.007512) 0.062730 / 0.038508 (0.024222) 0.051882 / 0.023109 (0.028773) 0.244766 / 0.275898 (-0.031132) 0.257963 / 0.323480 (-0.065516) 0.002894 / 0.007986 (-0.005092) 0.002567 / 0.004328 (-0.001761) 0.048756 / 0.004250 (0.044506) 0.039024 / 0.037052 (0.001971) 0.247303 / 0.258489 (-0.011186) 0.278341 / 0.293841 (-0.015500) 0.026725 / 0.128546 (-0.101821) 0.010577 / 0.075646 (-0.065069) 0.210483 / 0.419271 (-0.208789) 0.035230 / 0.043533 (-0.008303) 0.246125 / 0.255139 (-0.009014) 0.264039 / 0.283200 (-0.019160) 0.019881 / 0.141683 (-0.121802) 1.113475 / 1.452155 (-0.338679) 1.149606 / 1.492716 (-0.343110)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092946 / 0.018006 (0.074940) 0.299985 / 0.000490 (0.299495) 0.000215 / 0.000200 (0.000016) 0.000050 / 0.000054 (-0.000005)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018421 / 0.037411 (-0.018991) 0.060531 / 0.014526 (0.046005) 0.074459 / 0.176557 (-0.102098) 0.120369 / 0.737135 (-0.616766) 0.075505 / 0.296338 (-0.220833)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289497 / 0.215209 (0.074288) 2.783139 / 2.077655 (0.705485) 1.482533 / 1.504120 (-0.021587) 1.371013 / 1.541195 (-0.170182) 1.379114 / 1.468490 (-0.089376) 0.563953 / 4.584777 (-4.020824) 2.389996 / 3.745712 (-1.355716) 2.788067 / 5.269862 (-2.481795) 1.751772 / 4.565676 (-2.813904) 0.062680 / 0.424275 (-0.361595) 0.004901 / 0.007607 (-0.002706) 0.365193 / 0.226044 (0.139149) 3.389181 / 2.268929 (1.120252) 1.861659 / 55.444624 (-53.582965) 1.558899 / 6.876477 (-5.317577) 1.591079 / 2.142072 (-0.550993) 0.648300 / 4.805227 (-4.156927) 0.117486 / 6.500664 (-6.383178) 0.041961 / 0.075469 (-0.033508)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.944391 / 1.841788 (-0.897396) 11.500823 / 8.074308 (3.426515) 10.580430 / 10.191392 (0.389038) 0.142845 / 0.680424 (-0.537579) 0.014305 / 0.534201 (-0.519896) 0.290723 / 0.579283 (-0.288560) 0.266206 / 0.434364 (-0.168158) 0.325482 / 0.540337 (-0.214856) 0.416224 / 1.386936 (-0.970712)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005363 / 0.011353 (-0.005990) 0.003548 / 0.011008 (-0.007460) 0.048704 / 0.038508 (0.010196) 0.051025 / 0.023109 (0.027916) 0.273037 / 0.275898 (-0.002861) 0.297148 / 0.323480 (-0.026332) 0.003985 / 0.007986 (-0.004001) 0.002739 / 0.004328 (-0.001590) 0.048108 / 0.004250 (0.043857) 0.040244 / 0.037052 (0.003191) 0.277825 / 0.258489 (0.019336) 0.303704 / 0.293841 (0.009863) 0.029460 / 0.128546 (-0.099086) 0.010428 / 0.075646 (-0.065218) 0.057022 / 0.419271 (-0.362249) 0.032711 / 0.043533 (-0.010822) 0.274462 / 0.255139 (0.019323) 0.293499 / 0.283200 (0.010299) 0.018266 / 0.141683 (-0.123417) 1.158049 / 1.452155 (-0.294106) 1.170097 / 1.492716 (-0.322620)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093412 / 0.018006 (0.075406) 0.301538 / 0.000490 (0.301049) 0.000222 / 0.000200 (0.000022) 0.000051 / 0.000054 (-0.000003)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021698 / 0.037411 (-0.015713) 0.068735 / 0.014526 (0.054209) 0.083010 / 0.176557 (-0.093546) 0.127491 / 0.737135 (-0.609644) 0.083005 / 0.296338 (-0.213333)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.298299 / 0.215209 (0.083090) 2.894209 / 2.077655 (0.816554) 1.597455 / 1.504120 (0.093335) 1.472953 / 1.541195 (-0.068241) 1.491553 / 1.468490 (0.023063) 0.556566 / 4.584777 (-4.028211) 2.419429 / 3.745712 (-1.326283) 2.788706 / 5.269862 (-2.481156) 1.759888 / 4.565676 (-2.805789) 0.062535 / 0.424275 (-0.361740) 0.004959 / 0.007607 (-0.002648) 0.345226 / 0.226044 (0.119182) 3.438539 / 2.268929 (1.169611) 1.943842 / 55.444624 (-53.500782) 1.661080 / 6.876477 (-5.215397) 1.687632 / 2.142072 (-0.454440) 0.639971 / 4.805227 (-4.165256) 0.116012 / 6.500664 (-6.384652) 0.041723 / 0.075469 (-0.033746)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.965143 / 1.841788 (-0.876645) 12.086547 / 8.074308 (4.012238) 10.708787 / 10.191392 (0.517395) 0.129506 / 0.680424 (-0.550918) 0.015254 / 0.534201 (-0.518947) 0.288326 / 0.579283 (-0.290957) 0.271976 / 0.434364 (-0.162388) 0.328402 / 0.540337 (-0.211936) 0.418102 / 1.386936 (-0.968834)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005375 / 0.011353 (-0.005978) 0.003530 / 0.011008 (-0.007478) 0.062521 / 0.038508 (0.024013) 0.051514 / 0.023109 (0.028405) 0.241623 / 0.275898 (-0.034275) 0.269054 / 0.323480 (-0.054426) 0.002877 / 0.007986 (-0.005109) 0.002724 / 0.004328 (-0.001605) 0.049045 / 0.004250 (0.044794) 0.038560 / 0.037052 (0.001507) 0.248437 / 0.258489 (-0.010052) 0.276762 / 0.293841 (-0.017079) 0.027522 / 0.128546 (-0.101024) 0.010817 / 0.075646 (-0.064829) 0.208686 / 0.419271 (-0.210585) 0.035818 / 0.043533 (-0.007715) 0.249398 / 0.255139 (-0.005741) 0.268288 / 0.283200 (-0.014911) 0.019039 / 0.141683 (-0.122644) 1.135115 / 1.452155 (-0.317040) 1.195531 / 1.492716 (-0.297185)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093126 / 0.018006 (0.075120) 0.301028 / 0.000490 (0.300539) 0.000222 / 0.000200 (0.000023) 0.000062 / 0.000054 (0.000007)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018385 / 0.037411 (-0.019027) 0.060902 / 0.014526 (0.046376) 0.073168 / 0.176557 (-0.103389) 0.119216 / 0.737135 (-0.617919) 0.074225 / 0.296338 (-0.222114)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.283749 / 0.215209 (0.068540) 2.741609 / 2.077655 (0.663954) 1.483439 / 1.504120 (-0.020681) 1.352896 / 1.541195 (-0.188299) 1.378824 / 1.468490 (-0.089667) 0.548731 / 4.584777 (-4.036046) 2.342717 / 3.745712 (-1.402995) 2.791592 / 5.269862 (-2.478269) 1.740605 / 4.565676 (-2.825071) 0.062059 / 0.424275 (-0.362216) 0.005028 / 0.007607 (-0.002579) 0.339205 / 0.226044 (0.113161) 3.353386 / 2.268929 (1.084458) 1.785717 / 55.444624 (-53.658907) 1.523390 / 6.876477 (-5.353086) 1.556999 / 2.142072 (-0.585073) 0.636745 / 4.805227 (-4.168483) 0.115821 / 6.500664 (-6.384843) 0.042200 / 0.075469 (-0.033269)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.948678 / 1.841788 (-0.893110) 11.588670 / 8.074308 (3.514362) 10.897130 / 10.191392 (0.705738) 0.140068 / 0.680424 (-0.540356) 0.014565 / 0.534201 (-0.519636) 0.286336 / 0.579283 (-0.292947) 0.265292 / 0.434364 (-0.169072) 0.324146 / 0.540337 (-0.216192) 0.413463 / 1.386936 (-0.973473)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005187 / 0.011353 (-0.006165) 0.003471 / 0.011008 (-0.007537) 0.048968 / 0.038508 (0.010460) 0.051285 / 0.023109 (0.028176) 0.283286 / 0.275898 (0.007388) 0.307046 / 0.323480 (-0.016434) 0.004017 / 0.007986 (-0.003969) 0.002655 / 0.004328 (-0.001673) 0.047762 / 0.004250 (0.043512) 0.039855 / 0.037052 (0.002803) 0.283101 / 0.258489 (0.024612) 0.312905 / 0.293841 (0.019064) 0.028188 / 0.128546 (-0.100358) 0.010849 / 0.075646 (-0.064797) 0.058112 / 0.419271 (-0.361159) 0.032163 / 0.043533 (-0.011369) 0.280825 / 0.255139 (0.025686) 0.300946 / 0.283200 (0.017747) 0.017409 / 0.141683 (-0.124274) 1.127360 / 1.452155 (-0.324795) 1.180409 / 1.492716 (-0.312307)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093186 / 0.018006 (0.075180) 0.300827 / 0.000490 (0.300338) 0.000220 / 0.000200 (0.000020) 0.000052 / 0.000054 (-0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021560 / 0.037411 (-0.015851) 0.069158 / 0.014526 (0.054632) 0.080953 / 0.176557 (-0.095603) 0.119071 / 0.737135 (-0.618064) 0.082817 / 0.296338 (-0.213521)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.307259 / 0.215209 (0.092050) 2.996058 / 2.077655 (0.918404) 1.627406 / 1.504120 (0.123286) 1.500715 / 1.541195 (-0.040480) 1.524278 / 1.468490 (0.055788) 0.569711 / 4.584777 (-4.015066) 2.436132 / 3.745712 (-1.309580) 2.796995 / 5.269862 (-2.472866) 1.760701 / 4.565676 (-2.804975) 0.063521 / 0.424275 (-0.360754) 0.004909 / 0.007607 (-0.002698) 0.359129 / 0.226044 (0.133085) 3.567278 / 2.268929 (1.298349) 2.013821 / 55.444624 (-53.430804) 1.708021 / 6.876477 (-5.168456) 1.738959 / 2.142072 (-0.403114) 0.648620 / 4.805227 (-4.156607) 0.122016 / 6.500664 (-6.378648) 0.041802 / 0.075469 (-0.033667)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.985208 / 1.841788 (-0.856579) 12.307785 / 8.074308 (4.233477) 10.587262 / 10.191392 (0.395870) 0.130468 / 0.680424 (-0.549956) 0.014912 / 0.534201 (-0.519289) 0.293822 / 0.579283 (-0.285461) 0.283021 / 0.434364 (-0.151343) 0.329560 / 0.540337 (-0.210777) 0.424741 / 1.386936 (-0.962195)

@mariosasko mariosasko marked this pull request as ready for review November 28, 2023 15:16
@mariosasko mariosasko requested a review from lhoestq November 28, 2023 15:17
Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Awesome ! Thanks for cleaning this and for the improvements :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

.map not hashing under python 3.9 Make models/functions optimized with torch.compile hashable

4 participants