Skip to content

Conversation

@albertvillanova
Copy link
Member

Create DatasetNotFoundError and DataFilesNotFoundError.

Fix #6397.

CC: @severo

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004459 / 0.011353 (-0.006894) 0.002883 / 0.011008 (-0.008125) 0.062434 / 0.038508 (0.023925) 0.030353 / 0.023109 (0.007244) 0.256696 / 0.275898 (-0.019202) 0.280557 / 0.323480 (-0.042923) 0.003903 / 0.007986 (-0.004083) 0.002424 / 0.004328 (-0.001905) 0.048509 / 0.004250 (0.044259) 0.043583 / 0.037052 (0.006531) 0.253900 / 0.258489 (-0.004590) 0.309146 / 0.293841 (0.015305) 0.023253 / 0.128546 (-0.105294) 0.007073 / 0.075646 (-0.068573) 0.204118 / 0.419271 (-0.215154) 0.056429 / 0.043533 (0.012897) 0.247331 / 0.255139 (-0.007808) 0.271581 / 0.283200 (-0.011619) 0.017021 / 0.141683 (-0.124662) 1.115057 / 1.452155 (-0.337098) 1.209947 / 1.492716 (-0.282770)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093141 / 0.018006 (0.075134) 0.295987 / 0.000490 (0.295497) 0.000221 / 0.000200 (0.000021) 0.000048 / 0.000054 (-0.000006)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019182 / 0.037411 (-0.018230) 0.062049 / 0.014526 (0.047523) 0.073824 / 0.176557 (-0.102733) 0.120175 / 0.737135 (-0.616960) 0.074700 / 0.296338 (-0.221639)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.280036 / 0.215209 (0.064827) 2.731512 / 2.077655 (0.653857) 1.414606 / 1.504120 (-0.089514) 1.302433 / 1.541195 (-0.238761) 1.313012 / 1.468490 (-0.155478) 0.399722 / 4.584777 (-4.185055) 2.371249 / 3.745712 (-1.374463) 2.582520 / 5.269862 (-2.687342) 1.558505 / 4.565676 (-3.007171) 0.045765 / 0.424275 (-0.378510) 0.004748 / 0.007607 (-0.002859) 0.327623 / 0.226044 (0.101578) 3.258742 / 2.268929 (0.989814) 1.756798 / 55.444624 (-53.687826) 1.494551 / 6.876477 (-5.381925) 1.518161 / 2.142072 (-0.623911) 0.468560 / 4.805227 (-4.336667) 0.101034 / 6.500664 (-6.399630) 0.048259 / 0.075469 (-0.027210)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.938146 / 1.841788 (-0.903642) 11.636387 / 8.074308 (3.562078) 10.638909 / 10.191392 (0.447517) 0.128340 / 0.680424 (-0.552084) 0.015194 / 0.534201 (-0.519007) 0.275961 / 0.579283 (-0.303322) 0.264629 / 0.434364 (-0.169735) 0.308580 / 0.540337 (-0.231758) 0.433658 / 1.386936 (-0.953278)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004797 / 0.011353 (-0.006556) 0.002801 / 0.011008 (-0.008208) 0.048101 / 0.038508 (0.009593) 0.056406 / 0.023109 (0.033296) 0.274966 / 0.275898 (-0.000932) 0.298310 / 0.323480 (-0.025170) 0.004115 / 0.007986 (-0.003871) 0.002437 / 0.004328 (-0.001891) 0.047921 / 0.004250 (0.043671) 0.038812 / 0.037052 (0.001760) 0.279594 / 0.258489 (0.021105) 0.313703 / 0.293841 (0.019862) 0.024485 / 0.128546 (-0.104061) 0.007095 / 0.075646 (-0.068551) 0.053398 / 0.419271 (-0.365874) 0.032306 / 0.043533 (-0.011227) 0.278014 / 0.255139 (0.022875) 0.301156 / 0.283200 (0.017956) 0.017353 / 0.141683 (-0.124330) 1.150168 / 1.452155 (-0.301987) 1.190822 / 1.492716 (-0.301894)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092162 / 0.018006 (0.074156) 0.301031 / 0.000490 (0.300541) 0.000244 / 0.000200 (0.000044) 0.000062 / 0.000054 (0.000008)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.020918 / 0.037411 (-0.016494) 0.072030 / 0.014526 (0.057504) 0.081813 / 0.176557 (-0.094743) 0.120233 / 0.737135 (-0.616903) 0.082874 / 0.296338 (-0.213465)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.291659 / 0.215209 (0.076450) 2.841978 / 2.077655 (0.764323) 1.594207 / 1.504120 (0.090087) 1.473941 / 1.541195 (-0.067254) 1.514393 / 1.468490 (0.045903) 0.393393 / 4.584777 (-4.191384) 2.443663 / 3.745712 (-1.302050) 2.545747 / 5.269862 (-2.724114) 1.521130 / 4.565676 (-3.044546) 0.046246 / 0.424275 (-0.378030) 0.004826 / 0.007607 (-0.002781) 0.340909 / 0.226044 (0.114865) 3.319474 / 2.268929 (1.050546) 1.933110 / 55.444624 (-53.511515) 1.662463 / 6.876477 (-5.214014) 1.670331 / 2.142072 (-0.471742) 0.458062 / 4.805227 (-4.347165) 0.098397 / 6.500664 (-6.402267) 0.041339 / 0.075469 (-0.034130)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.973718 / 1.841788 (-0.868070) 12.095266 / 8.074308 (4.020957) 10.761212 / 10.191392 (0.569820) 0.142352 / 0.680424 (-0.538072) 0.015423 / 0.534201 (-0.518778) 0.270912 / 0.579283 (-0.308371) 0.276618 / 0.434364 (-0.157746) 0.309120 / 0.540337 (-0.231217) 0.415330 / 1.386936 (-0.971606)

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Nov 16, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004676 / 0.011353 (-0.006677) 0.003101 / 0.011008 (-0.007907) 0.062260 / 0.038508 (0.023752) 0.030012 / 0.023109 (0.006903) 0.253704 / 0.275898 (-0.022194) 0.276404 / 0.323480 (-0.047075) 0.004060 / 0.007986 (-0.003926) 0.002467 / 0.004328 (-0.001861) 0.047921 / 0.004250 (0.043670) 0.045760 / 0.037052 (0.008708) 0.254529 / 0.258489 (-0.003960) 0.286283 / 0.293841 (-0.007558) 0.023301 / 0.128546 (-0.105246) 0.007407 / 0.075646 (-0.068239) 0.204541 / 0.419271 (-0.214730) 0.056387 / 0.043533 (0.012854) 0.252120 / 0.255139 (-0.003019) 0.275795 / 0.283200 (-0.007404) 0.018648 / 0.141683 (-0.123034) 1.113484 / 1.452155 (-0.338671) 1.168685 / 1.492716 (-0.324031)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.098286 / 0.018006 (0.080280) 0.304619 / 0.000490 (0.304129) 0.000225 / 0.000200 (0.000025) 0.000058 / 0.000054 (0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019183 / 0.037411 (-0.018229) 0.062183 / 0.014526 (0.047657) 0.074288 / 0.176557 (-0.102269) 0.120576 / 0.737135 (-0.616560) 0.074833 / 0.296338 (-0.221505)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.280512 / 0.215209 (0.065303) 2.770052 / 2.077655 (0.692397) 1.471234 / 1.504120 (-0.032886) 1.352080 / 1.541195 (-0.189114) 1.374518 / 1.468490 (-0.093973) 0.407108 / 4.584777 (-4.177669) 2.400581 / 3.745712 (-1.345131) 2.677507 / 5.269862 (-2.592355) 1.578042 / 4.565676 (-2.987635) 0.048539 / 0.424275 (-0.375736) 0.004905 / 0.007607 (-0.002703) 0.346676 / 0.226044 (0.120631) 3.367732 / 2.268929 (1.098803) 1.844405 / 55.444624 (-53.600220) 1.576883 / 6.876477 (-5.299594) 1.666986 / 2.142072 (-0.475086) 0.495872 / 4.805227 (-4.309355) 0.103142 / 6.500664 (-6.397522) 0.044037 / 0.075469 (-0.031432)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.980865 / 1.841788 (-0.860923) 12.268525 / 8.074308 (4.194217) 10.756554 / 10.191392 (0.565162) 0.129954 / 0.680424 (-0.550470) 0.013864 / 0.534201 (-0.520337) 0.267653 / 0.579283 (-0.311630) 0.265120 / 0.434364 (-0.169244) 0.309050 / 0.540337 (-0.231288) 0.423877 / 1.386936 (-0.963059)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005074 / 0.011353 (-0.006279) 0.003001 / 0.011008 (-0.008007) 0.048271 / 0.038508 (0.009763) 0.061206 / 0.023109 (0.038097) 0.279268 / 0.275898 (0.003370) 0.302592 / 0.323480 (-0.020888) 0.004177 / 0.007986 (-0.003809) 0.002452 / 0.004328 (-0.001876) 0.048259 / 0.004250 (0.044009) 0.040032 / 0.037052 (0.002979) 0.281398 / 0.258489 (0.022909) 0.314121 / 0.293841 (0.020280) 0.025137 / 0.128546 (-0.103409) 0.007230 / 0.075646 (-0.068416) 0.054537 / 0.419271 (-0.364735) 0.033266 / 0.043533 (-0.010267) 0.277305 / 0.255139 (0.022166) 0.295993 / 0.283200 (0.012794) 0.019278 / 0.141683 (-0.122405) 1.131700 / 1.452155 (-0.320454) 1.183848 / 1.492716 (-0.308868)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092258 / 0.018006 (0.074251) 0.310668 / 0.000490 (0.310178) 0.000219 / 0.000200 (0.000019) 0.000047 / 0.000054 (-0.000008)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021838 / 0.037411 (-0.015574) 0.071382 / 0.014526 (0.056857) 0.081389 / 0.176557 (-0.095168) 0.120389 / 0.737135 (-0.616746) 0.084135 / 0.296338 (-0.212203)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.291676 / 0.215209 (0.076467) 2.840623 / 2.077655 (0.762968) 1.565748 / 1.504120 (0.061628) 1.452529 / 1.541195 (-0.088666) 1.490633 / 1.468490 (0.022143) 0.402878 / 4.584777 (-4.181899) 2.486192 / 3.745712 (-1.259520) 2.520563 / 5.269862 (-2.749299) 1.518550 / 4.565676 (-3.047127) 0.047423 / 0.424275 (-0.376852) 0.004823 / 0.007607 (-0.002784) 0.353122 / 0.226044 (0.127078) 3.452136 / 2.268929 (1.183208) 1.973798 / 55.444624 (-53.470827) 1.669569 / 6.876477 (-5.206907) 1.654910 / 2.142072 (-0.487163) 0.486746 / 4.805227 (-4.318481) 0.097260 / 6.500664 (-6.403404) 0.040608 / 0.075469 (-0.034861)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.989705 / 1.841788 (-0.852083) 12.114386 / 8.074308 (4.040077) 11.284551 / 10.191392 (1.093159) 0.141408 / 0.680424 (-0.539016) 0.015275 / 0.534201 (-0.518926) 0.267407 / 0.579283 (-0.311877) 0.281007 / 0.434364 (-0.153357) 0.309617 / 0.540337 (-0.230720) 0.414033 / 1.386936 (-0.972903)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004888 / 0.011353 (-0.006465) 0.002775 / 0.011008 (-0.008233) 0.062000 / 0.038508 (0.023492) 0.050694 / 0.023109 (0.027584) 0.257063 / 0.275898 (-0.018835) 0.282743 / 0.323480 (-0.040736) 0.002862 / 0.007986 (-0.005124) 0.002305 / 0.004328 (-0.002023) 0.049549 / 0.004250 (0.045299) 0.038754 / 0.037052 (0.001701) 0.264047 / 0.258489 (0.005558) 0.310162 / 0.293841 (0.016321) 0.022901 / 0.128546 (-0.105645) 0.006894 / 0.075646 (-0.068752) 0.202467 / 0.419271 (-0.216805) 0.035901 / 0.043533 (-0.007631) 0.262344 / 0.255139 (0.007205) 0.285563 / 0.283200 (0.002364) 0.017070 / 0.141683 (-0.124613) 1.113972 / 1.452155 (-0.338182) 1.176261 / 1.492716 (-0.316455)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.092912 / 0.018006 (0.074906) 0.302610 / 0.000490 (0.302120) 0.000204 / 0.000200 (0.000005) 0.000043 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018232 / 0.037411 (-0.019179) 0.062367 / 0.014526 (0.047841) 0.074570 / 0.176557 (-0.101987) 0.120468 / 0.737135 (-0.616668) 0.075187 / 0.296338 (-0.221151)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.279760 / 0.215209 (0.064551) 2.715372 / 2.077655 (0.637717) 1.461636 / 1.504120 (-0.042484) 1.324220 / 1.541195 (-0.216975) 1.350724 / 1.468490 (-0.117766) 0.395648 / 4.584777 (-4.189129) 2.376548 / 3.745712 (-1.369164) 2.594662 / 5.269862 (-2.675200) 1.553528 / 4.565676 (-3.012148) 0.047875 / 0.424275 (-0.376400) 0.005287 / 0.007607 (-0.002321) 0.334734 / 0.226044 (0.108689) 3.294753 / 2.268929 (1.025825) 1.797901 / 55.444624 (-53.646724) 1.510907 / 6.876477 (-5.365570) 1.536070 / 2.142072 (-0.606003) 0.474672 / 4.805227 (-4.330555) 0.099323 / 6.500664 (-6.401341) 0.041703 / 0.075469 (-0.033766)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.947441 / 1.841788 (-0.894347) 11.451378 / 8.074308 (3.377070) 10.283213 / 10.191392 (0.091821) 0.131032 / 0.680424 (-0.549392) 0.014423 / 0.534201 (-0.519777) 0.272568 / 0.579283 (-0.306715) 0.267127 / 0.434364 (-0.167237) 0.307361 / 0.540337 (-0.232976) 0.403858 / 1.386936 (-0.983078)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004836 / 0.011353 (-0.006517) 0.002544 / 0.011008 (-0.008464) 0.047979 / 0.038508 (0.009471) 0.052211 / 0.023109 (0.029102) 0.273394 / 0.275898 (-0.002504) 0.291202 / 0.323480 (-0.032277) 0.004094 / 0.007986 (-0.003891) 0.002415 / 0.004328 (-0.001914) 0.048057 / 0.004250 (0.043807) 0.039756 / 0.037052 (0.002703) 0.277301 / 0.258489 (0.018812) 0.297626 / 0.293841 (0.003785) 0.024641 / 0.128546 (-0.103905) 0.006957 / 0.075646 (-0.068690) 0.053574 / 0.419271 (-0.365697) 0.036532 / 0.043533 (-0.007001) 0.273753 / 0.255139 (0.018614) 0.294254 / 0.283200 (0.011054) 0.022252 / 0.141683 (-0.119431) 1.128609 / 1.452155 (-0.323546) 1.217322 / 1.492716 (-0.275394)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091050 / 0.018006 (0.073044) 0.300089 / 0.000490 (0.299600) 0.000215 / 0.000200 (0.000015) 0.000045 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021423 / 0.037411 (-0.015988) 0.069892 / 0.014526 (0.055366) 0.081125 / 0.176557 (-0.095432) 0.118725 / 0.737135 (-0.618411) 0.081357 / 0.296338 (-0.214981)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.295046 / 0.215209 (0.079837) 2.868813 / 2.077655 (0.791159) 1.579613 / 1.504120 (0.075493) 1.449308 / 1.541195 (-0.091887) 1.478804 / 1.468490 (0.010314) 0.416916 / 4.584777 (-4.167861) 2.461093 / 3.745712 (-1.284619) 2.449792 / 5.269862 (-2.820070) 1.573930 / 4.565676 (-2.991746) 0.046808 / 0.424275 (-0.377467) 0.004811 / 0.007607 (-0.002796) 0.352805 / 0.226044 (0.126761) 3.495034 / 2.268929 (1.226105) 1.952019 / 55.444624 (-53.492606) 1.642607 / 6.876477 (-5.233869) 1.775235 / 2.142072 (-0.366837) 0.482196 / 4.805227 (-4.323032) 0.099562 / 6.500664 (-6.401102) 0.040709 / 0.075469 (-0.034760)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.972750 / 1.841788 (-0.869038) 11.905172 / 8.074308 (3.830864) 10.613847 / 10.191392 (0.422455) 0.129892 / 0.680424 (-0.550532) 0.015611 / 0.534201 (-0.518590) 0.271884 / 0.579283 (-0.307400) 0.275270 / 0.434364 (-0.159094) 0.303213 / 0.540337 (-0.237125) 0.402338 / 1.386936 (-0.984598)

@albertvillanova
Copy link
Member Author

I think this PR can be merged.

@severo
Copy link
Collaborator

severo commented Nov 20, 2023

you already have an approval, feel free to merge!

Comment on lines +21 to +27
class DatasetNotFoundError(FileNotFoundDatasetsError):
"""Dataset not found.
Raised when trying to access:
- a missing dataset, or
- a private/gated dataset and the user is not authenticated.
"""
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe we could re-use huggingface_hub's RepositoryNotFound and GatedRepo errors instead of introducing our own (this exception should at least subclass them)

For example, transformers throws an EnvironmentError (with the error description) and chains the caught (huggingface_hub) exception, so consistency with them would be nice.

Copy link
Member Author

@albertvillanova albertvillanova Nov 21, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I agree we could sub-class huggingface_hub errors as well, but at the same time, sub-classing our datasets DatasetsError base class, so that a user of datasets can catch all datasets errors by using this DatasetsError class.

But anyway, we are just replacing the FileNotFound errors we were previously raising from datasets, whereas huggingface_hub RepositoryNotFoundErrorsubclassesrequests.HTTPError(through the classHfHubHTTPError) not FileNotFoundError. I see this as adding unnecessary complexity to our datasets` error hierarchy.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would propose to address in a subsequent PR to catch specific huggingface_hub errors (instead of parsing the HTTP error status code: this is done by huggingface_hub) and raise our specific errors accordingly.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004826 / 0.011353 (-0.006527) 0.002979 / 0.011008 (-0.008029) 0.062055 / 0.038508 (0.023547) 0.056574 / 0.023109 (0.033465) 0.244342 / 0.275898 (-0.031556) 0.278040 / 0.323480 (-0.045439) 0.004020 / 0.007986 (-0.003965) 0.002474 / 0.004328 (-0.001855) 0.048451 / 0.004250 (0.044200) 0.038633 / 0.037052 (0.001580) 0.251389 / 0.258489 (-0.007100) 0.282739 / 0.293841 (-0.011102) 0.023298 / 0.128546 (-0.105248) 0.007513 / 0.075646 (-0.068134) 0.203014 / 0.419271 (-0.216257) 0.036216 / 0.043533 (-0.007317) 0.250988 / 0.255139 (-0.004151) 0.281228 / 0.283200 (-0.001972) 0.018259 / 0.141683 (-0.123424) 1.121200 / 1.452155 (-0.330955) 1.184298 / 1.492716 (-0.308419)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093730 / 0.018006 (0.075724) 0.301716 / 0.000490 (0.301226) 0.000223 / 0.000200 (0.000023) 0.000051 / 0.000054 (-0.000004)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019238 / 0.037411 (-0.018173) 0.064329 / 0.014526 (0.049803) 0.075657 / 0.176557 (-0.100899) 0.122616 / 0.737135 (-0.614519) 0.077459 / 0.296338 (-0.218880)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.280153 / 0.215209 (0.064944) 2.715488 / 2.077655 (0.637833) 1.449666 / 1.504120 (-0.054454) 1.331903 / 1.541195 (-0.209292) 1.396200 / 1.468490 (-0.072290) 0.398861 / 4.584777 (-4.185916) 2.402814 / 3.745712 (-1.342898) 2.664033 / 5.269862 (-2.605829) 1.619589 / 4.565676 (-2.946088) 0.044798 / 0.424275 (-0.379477) 0.004989 / 0.007607 (-0.002618) 0.336822 / 0.226044 (0.110777) 3.245604 / 2.268929 (0.976676) 1.815633 / 55.444624 (-53.628991) 1.557975 / 6.876477 (-5.318501) 1.603655 / 2.142072 (-0.538417) 0.462980 / 4.805227 (-4.342247) 0.098340 / 6.500664 (-6.402324) 0.042750 / 0.075469 (-0.032719)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.973785 / 1.841788 (-0.868003) 12.379356 / 8.074308 (4.305048) 10.540164 / 10.191392 (0.348772) 0.144803 / 0.680424 (-0.535621) 0.013875 / 0.534201 (-0.520326) 0.270192 / 0.579283 (-0.309091) 0.264614 / 0.434364 (-0.169750) 0.313454 / 0.540337 (-0.226883) 0.402310 / 1.386936 (-0.984626)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004987 / 0.011353 (-0.006366) 0.003017 / 0.011008 (-0.007992) 0.048592 / 0.038508 (0.010084) 0.059370 / 0.023109 (0.036261) 0.277536 / 0.275898 (0.001638) 0.300592 / 0.323480 (-0.022888) 0.004870 / 0.007986 (-0.003115) 0.002452 / 0.004328 (-0.001876) 0.047972 / 0.004250 (0.043721) 0.042336 / 0.037052 (0.005283) 0.277570 / 0.258489 (0.019081) 0.304739 / 0.293841 (0.010898) 0.025313 / 0.128546 (-0.103233) 0.007219 / 0.075646 (-0.068427) 0.053967 / 0.419271 (-0.365304) 0.033314 / 0.043533 (-0.010219) 0.273908 / 0.255139 (0.018769) 0.291913 / 0.283200 (0.008713) 0.019440 / 0.141683 (-0.122243) 1.111047 / 1.452155 (-0.341107) 1.191276 / 1.492716 (-0.301440)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093985 / 0.018006 (0.075979) 0.303105 / 0.000490 (0.302615) 0.000235 / 0.000200 (0.000035) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022226 / 0.037411 (-0.015186) 0.072151 / 0.014526 (0.057625) 0.081700 / 0.176557 (-0.094857) 0.121407 / 0.737135 (-0.615729) 0.083217 / 0.296338 (-0.213121)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.297286 / 0.215209 (0.082077) 2.913392 / 2.077655 (0.835738) 1.591758 / 1.504120 (0.087638) 1.463339 / 1.541195 (-0.077856) 1.495095 / 1.468490 (0.026605) 0.414341 / 4.584777 (-4.170436) 2.412438 / 3.745712 (-1.333275) 2.611452 / 5.269862 (-2.658410) 1.658545 / 4.565676 (-2.907132) 0.047269 / 0.424275 (-0.377007) 0.004872 / 0.007607 (-0.002735) 0.350746 / 0.226044 (0.124701) 3.491482 / 2.268929 (1.222554) 1.999009 / 55.444624 (-53.445616) 1.672862 / 6.876477 (-5.203615) 1.863095 / 2.142072 (-0.278977) 0.484746 / 4.805227 (-4.320481) 0.100774 / 6.500664 (-6.399890) 0.042519 / 0.075469 (-0.032950)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.984497 / 1.841788 (-0.857291) 12.972576 / 8.074308 (4.898268) 10.886021 / 10.191392 (0.694629) 0.141639 / 0.680424 (-0.538785) 0.015726 / 0.534201 (-0.518475) 0.284160 / 0.579283 (-0.295123) 0.291437 / 0.434364 (-0.142927) 0.314121 / 0.540337 (-0.226217) 0.420439 / 1.386936 (-0.966497)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004881 / 0.011353 (-0.006472) 0.002550 / 0.011008 (-0.008458) 0.062171 / 0.038508 (0.023663) 0.055341 / 0.023109 (0.032232) 0.243132 / 0.275898 (-0.032766) 0.265174 / 0.323480 (-0.058306) 0.002934 / 0.007986 (-0.005052) 0.002233 / 0.004328 (-0.002096) 0.049302 / 0.004250 (0.045052) 0.039491 / 0.037052 (0.002439) 0.252776 / 0.258489 (-0.005713) 0.280923 / 0.293841 (-0.012918) 0.022585 / 0.128546 (-0.105962) 0.006888 / 0.075646 (-0.068759) 0.202751 / 0.419271 (-0.216521) 0.035250 / 0.043533 (-0.008283) 0.251745 / 0.255139 (-0.003394) 0.267431 / 0.283200 (-0.015768) 0.019486 / 0.141683 (-0.122197) 1.161783 / 1.452155 (-0.290372) 1.194254 / 1.492716 (-0.298463)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.097772 / 0.018006 (0.079766) 0.309137 / 0.000490 (0.308647) 0.000225 / 0.000200 (0.000025) 0.000052 / 0.000054 (-0.000002)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018719 / 0.037411 (-0.018693) 0.062211 / 0.014526 (0.047686) 0.074291 / 0.176557 (-0.102266) 0.119436 / 0.737135 (-0.617699) 0.075519 / 0.296338 (-0.220820)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.279778 / 0.215209 (0.064569) 2.730678 / 2.077655 (0.653023) 1.413922 / 1.504120 (-0.090198) 1.286747 / 1.541195 (-0.254447) 1.299835 / 1.468490 (-0.168656) 0.392516 / 4.584777 (-4.192261) 2.381816 / 3.745712 (-1.363896) 2.616944 / 5.269862 (-2.652918) 1.606152 / 4.565676 (-2.959525) 0.044867 / 0.424275 (-0.379408) 0.004915 / 0.007607 (-0.002692) 0.334078 / 0.226044 (0.108034) 3.388096 / 2.268929 (1.119167) 1.756666 / 55.444624 (-53.687958) 1.497211 / 6.876477 (-5.379266) 1.496787 / 2.142072 (-0.645285) 0.469145 / 4.805227 (-4.336082) 0.097821 / 6.500664 (-6.402843) 0.041850 / 0.075469 (-0.033619)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.956878 / 1.841788 (-0.884910) 11.520184 / 8.074308 (3.445875) 10.659216 / 10.191392 (0.467824) 0.143687 / 0.680424 (-0.536737) 0.014118 / 0.534201 (-0.520083) 0.270990 / 0.579283 (-0.308293) 0.270057 / 0.434364 (-0.164306) 0.311109 / 0.540337 (-0.229229) 0.407042 / 1.386936 (-0.979894)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004816 / 0.011353 (-0.006537) 0.002898 / 0.011008 (-0.008110) 0.048540 / 0.038508 (0.010032) 0.055286 / 0.023109 (0.032176) 0.279086 / 0.275898 (0.003187) 0.298950 / 0.323480 (-0.024529) 0.004090 / 0.007986 (-0.003896) 0.002497 / 0.004328 (-0.001832) 0.049160 / 0.004250 (0.044910) 0.040612 / 0.037052 (0.003560) 0.287832 / 0.258489 (0.029343) 0.305617 / 0.293841 (0.011776) 0.023936 / 0.128546 (-0.104610) 0.007565 / 0.075646 (-0.068081) 0.054037 / 0.419271 (-0.365235) 0.032389 / 0.043533 (-0.011144) 0.283031 / 0.255139 (0.027892) 0.295411 / 0.283200 (0.012212) 0.018466 / 0.141683 (-0.123217) 1.134660 / 1.452155 (-0.317495) 1.196212 / 1.492716 (-0.296504)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.099961 / 0.018006 (0.081955) 0.310831 / 0.000490 (0.310342) 0.000238 / 0.000200 (0.000038) 0.000045 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021566 / 0.037411 (-0.015845) 0.070255 / 0.014526 (0.055729) 0.081221 / 0.176557 (-0.095336) 0.119404 / 0.737135 (-0.617732) 0.083005 / 0.296338 (-0.213333)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.302788 / 0.215209 (0.087579) 2.928876 / 2.077655 (0.851221) 1.601221 / 1.504120 (0.097101) 1.485147 / 1.541195 (-0.056047) 1.508698 / 1.468490 (0.040207) 0.402783 / 4.584777 (-4.181994) 2.432151 / 3.745712 (-1.313561) 2.476848 / 5.269862 (-2.793013) 1.585487 / 4.565676 (-2.980189) 0.045965 / 0.424275 (-0.378310) 0.004818 / 0.007607 (-0.002789) 0.354847 / 0.226044 (0.128803) 3.500670 / 2.268929 (1.231742) 1.951904 / 55.444624 (-53.492720) 1.675152 / 6.876477 (-5.201325) 1.795971 / 2.142072 (-0.346101) 0.470625 / 4.805227 (-4.334602) 0.126080 / 6.500664 (-6.374584) 0.040506 / 0.075469 (-0.034963)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.985251 / 1.841788 (-0.856536) 12.316710 / 8.074308 (4.242402) 10.674437 / 10.191392 (0.483045) 0.133622 / 0.680424 (-0.546802) 0.016756 / 0.534201 (-0.517445) 0.269318 / 0.579283 (-0.309965) 0.282258 / 0.434364 (-0.152106) 0.309941 / 0.540337 (-0.230396) 0.403189 / 1.386936 (-0.983747)

@albertvillanova
Copy link
Member Author

I am merging this PR because we need it by datasets-server.

@albertvillanova albertvillanova merged commit aa8558f into main Nov 22, 2023
@albertvillanova albertvillanova deleted the fix-6397 branch November 22, 2023 15:12
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004935 / 0.011353 (-0.006418) 0.002643 / 0.011008 (-0.008365) 0.064449 / 0.038508 (0.025941) 0.053110 / 0.023109 (0.030001) 0.261576 / 0.275898 (-0.014322) 0.270866 / 0.323480 (-0.052614) 0.002895 / 0.007986 (-0.005091) 0.002349 / 0.004328 (-0.001979) 0.047620 / 0.004250 (0.043370) 0.038699 / 0.037052 (0.001647) 0.246663 / 0.258489 (-0.011826) 0.282021 / 0.293841 (-0.011820) 0.022807 / 0.128546 (-0.105739) 0.007242 / 0.075646 (-0.068404) 0.204236 / 0.419271 (-0.215035) 0.035429 / 0.043533 (-0.008104) 0.241684 / 0.255139 (-0.013455) 0.262343 / 0.283200 (-0.020857) 0.020036 / 0.141683 (-0.121647) 1.112687 / 1.452155 (-0.339467) 1.167086 / 1.492716 (-0.325630)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.107059 / 0.018006 (0.089053) 0.301036 / 0.000490 (0.300546) 0.000224 / 0.000200 (0.000024) 0.000048 / 0.000054 (-0.000006)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018464 / 0.037411 (-0.018947) 0.063822 / 0.014526 (0.049296) 0.073562 / 0.176557 (-0.102994) 0.120136 / 0.737135 (-0.616999) 0.074934 / 0.296338 (-0.221405)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.275474 / 0.215209 (0.060265) 2.714239 / 2.077655 (0.636584) 1.455535 / 1.504120 (-0.048585) 1.336530 / 1.541195 (-0.204665) 1.359607 / 1.468490 (-0.108883) 0.396303 / 4.584777 (-4.188474) 2.366076 / 3.745712 (-1.379636) 2.600755 / 5.269862 (-2.669107) 1.572382 / 4.565676 (-2.993294) 0.045795 / 0.424275 (-0.378480) 0.004932 / 0.007607 (-0.002675) 0.332175 / 0.226044 (0.106130) 3.257843 / 2.268929 (0.988915) 1.799021 / 55.444624 (-53.645603) 1.532813 / 6.876477 (-5.343663) 1.552279 / 2.142072 (-0.589794) 0.471369 / 4.805227 (-4.333858) 0.098931 / 6.500664 (-6.401733) 0.042735 / 0.075469 (-0.032734)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.960779 / 1.841788 (-0.881009) 11.741631 / 8.074308 (3.667322) 10.355721 / 10.191392 (0.164329) 0.129025 / 0.680424 (-0.551399) 0.013794 / 0.534201 (-0.520407) 0.267268 / 0.579283 (-0.312015) 0.265582 / 0.434364 (-0.168782) 0.306242 / 0.540337 (-0.234095) 0.400367 / 1.386936 (-0.986569)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004966 / 0.011353 (-0.006387) 0.002846 / 0.011008 (-0.008163) 0.049104 / 0.038508 (0.010596) 0.055436 / 0.023109 (0.032327) 0.273892 / 0.275898 (-0.002006) 0.300207 / 0.323480 (-0.023273) 0.004017 / 0.007986 (-0.003969) 0.002465 / 0.004328 (-0.001863) 0.048088 / 0.004250 (0.043837) 0.040037 / 0.037052 (0.002984) 0.279918 / 0.258489 (0.021429) 0.305378 / 0.293841 (0.011537) 0.024326 / 0.128546 (-0.104220) 0.006992 / 0.075646 (-0.068654) 0.053545 / 0.419271 (-0.365726) 0.032312 / 0.043533 (-0.011221) 0.272899 / 0.255139 (0.017760) 0.289683 / 0.283200 (0.006483) 0.019121 / 0.141683 (-0.122562) 1.133296 / 1.452155 (-0.318858) 1.220989 / 1.492716 (-0.271728)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093193 / 0.018006 (0.075187) 0.307658 / 0.000490 (0.307168) 0.000224 / 0.000200 (0.000024) 0.000045 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.022906 / 0.037411 (-0.014506) 0.080931 / 0.014526 (0.066405) 0.081442 / 0.176557 (-0.095115) 0.121150 / 0.737135 (-0.615986) 0.083387 / 0.296338 (-0.212952)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.294979 / 0.215209 (0.079770) 2.900090 / 2.077655 (0.822435) 1.610061 / 1.504120 (0.105941) 1.455118 / 1.541195 (-0.086077) 1.456599 / 1.468490 (-0.011891) 0.397919 / 4.584777 (-4.186858) 2.421010 / 3.745712 (-1.324702) 2.486527 / 5.269862 (-2.783334) 1.573854 / 4.565676 (-2.991822) 0.046199 / 0.424275 (-0.378076) 0.004888 / 0.007607 (-0.002719) 0.342183 / 0.226044 (0.116139) 3.392068 / 2.268929 (1.123140) 1.963688 / 55.444624 (-53.480936) 1.667611 / 6.876477 (-5.208866) 1.833706 / 2.142072 (-0.308367) 0.509421 / 4.805227 (-4.295806) 0.099669 / 6.500664 (-6.400995) 0.041004 / 0.075469 (-0.034465)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.956314 / 1.841788 (-0.885474) 12.190194 / 8.074308 (4.115886) 10.417839 / 10.191392 (0.226447) 0.144139 / 0.680424 (-0.536285) 0.015841 / 0.534201 (-0.518359) 0.270436 / 0.579283 (-0.308847) 0.273952 / 0.434364 (-0.160412) 0.303018 / 0.540337 (-0.237319) 0.410163 / 1.386936 (-0.976773)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Raise a different exception for inexisting dataset vs files without known extension

5 participants