Skip to content

Conversation

@mariosasko
Copy link
Collaborator

@mariosasko mariosasko commented Nov 15, 2023

While fixing the Windows errors in #6362, I noticed that PermissionError can still easily be thrown on the session exit by the temporary cache directory's finalizer (we would also have to keep track of intermediate datasets, copies, etc.). Due to the low usage of datasets on Windows, this PR takes a simpler approach to the issue than #2403 - it tries to delete the temporary cache directory, and if this fails, logs a warning message about using a delete-temp-cache CLI command to delete it manually. The problematic references are freed after the session exits, so the CLI command should then succeed. This PR implements Dataset.__setstate__ to register datasets with temporary cache files for deletion.

@HuggingFaceDocBuilderDev

The docs for this PR live here. All of your documentation changes will be reflected on that endpoint.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004750 / 0.011353 (-0.006603) 0.002928 / 0.011008 (-0.008080) 0.061962 / 0.038508 (0.023454) 0.029878 / 0.023109 (0.006768) 0.233380 / 0.275898 (-0.042518) 0.262221 / 0.323480 (-0.061259) 0.002982 / 0.007986 (-0.005004) 0.003698 / 0.004328 (-0.000630) 0.048565 / 0.004250 (0.044314) 0.046107 / 0.037052 (0.009055) 0.240090 / 0.258489 (-0.018399) 0.267294 / 0.293841 (-0.026547) 0.023335 / 0.128546 (-0.105211) 0.007221 / 0.075646 (-0.068425) 0.200903 / 0.419271 (-0.218369) 0.059237 / 0.043533 (0.015705) 0.234929 / 0.255139 (-0.020210) 0.256326 / 0.283200 (-0.026874) 0.018549 / 0.141683 (-0.123134) 1.103519 / 1.452155 (-0.348635) 1.156573 / 1.492716 (-0.336143)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091205 / 0.018006 (0.073199) 0.303533 / 0.000490 (0.303043) 0.000204 / 0.000200 (0.000004) 0.000042 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018572 / 0.037411 (-0.018839) 0.062323 / 0.014526 (0.047797) 0.074528 / 0.176557 (-0.102029) 0.120295 / 0.737135 (-0.616841) 0.076786 / 0.296338 (-0.219552)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.278814 / 0.215209 (0.063605) 2.745483 / 2.077655 (0.667829) 1.486073 / 1.504120 (-0.018047) 1.385334 / 1.541195 (-0.155861) 1.386351 / 1.468490 (-0.082139) 0.395545 / 4.584777 (-4.189232) 2.409468 / 3.745712 (-1.336244) 2.670702 / 5.269862 (-2.599159) 1.629245 / 4.565676 (-2.936432) 0.045990 / 0.424275 (-0.378286) 0.004782 / 0.007607 (-0.002825) 0.332912 / 0.226044 (0.106867) 3.249277 / 2.268929 (0.980349) 1.888690 / 55.444624 (-53.555934) 1.533462 / 6.876477 (-5.343015) 1.576045 / 2.142072 (-0.566027) 0.473090 / 4.805227 (-4.332138) 0.099448 / 6.500664 (-6.401216) 0.042613 / 0.075469 (-0.032857)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.944229 / 1.841788 (-0.897559) 12.103621 / 8.074308 (4.029313) 10.643471 / 10.191392 (0.452079) 0.143004 / 0.680424 (-0.537420) 0.013872 / 0.534201 (-0.520329) 0.272026 / 0.579283 (-0.307257) 0.298701 / 0.434364 (-0.135663) 0.310299 / 0.540337 (-0.230038) 0.420934 / 1.386936 (-0.966002)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004904 / 0.011353 (-0.006449) 0.003064 / 0.011008 (-0.007945) 0.047982 / 0.038508 (0.009474) 0.056354 / 0.023109 (0.033245) 0.292893 / 0.275898 (0.016995) 0.348744 / 0.323480 (0.025264) 0.003988 / 0.007986 (-0.003997) 0.002431 / 0.004328 (-0.001898) 0.049108 / 0.004250 (0.044857) 0.039055 / 0.037052 (0.002002) 0.278129 / 0.258489 (0.019640) 0.318547 / 0.293841 (0.024706) 0.025040 / 0.128546 (-0.103507) 0.007166 / 0.075646 (-0.068480) 0.053967 / 0.419271 (-0.365305) 0.033128 / 0.043533 (-0.010405) 0.272849 / 0.255139 (0.017710) 0.312143 / 0.283200 (0.028943) 0.017942 / 0.141683 (-0.123741) 1.192297 / 1.452155 (-0.259857) 1.328102 / 1.492716 (-0.164615)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.090903 / 0.018006 (0.072896) 0.301260 / 0.000490 (0.300770) 0.000215 / 0.000200 (0.000015) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021112 / 0.037411 (-0.016300) 0.070181 / 0.014526 (0.055656) 0.082431 / 0.176557 (-0.094126) 0.121973 / 0.737135 (-0.615163) 0.083617 / 0.296338 (-0.212721)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.289587 / 0.215209 (0.074378) 2.877895 / 2.077655 (0.800240) 1.721417 / 1.504120 (0.217297) 1.536023 / 1.541195 (-0.005171) 1.550917 / 1.468490 (0.082427) 0.402978 / 4.584777 (-4.181799) 2.431767 / 3.745712 (-1.313946) 2.544419 / 5.269862 (-2.725442) 1.554562 / 4.565676 (-3.011115) 0.046260 / 0.424275 (-0.378015) 0.004923 / 0.007607 (-0.002684) 0.341584 / 0.226044 (0.115540) 3.362133 / 2.268929 (1.093205) 1.928741 / 55.444624 (-53.515884) 1.654798 / 6.876477 (-5.221679) 1.715111 / 2.142072 (-0.426962) 0.471029 / 4.805227 (-4.334198) 0.098912 / 6.500664 (-6.401752) 0.041018 / 0.075469 (-0.034451)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.992880 / 1.841788 (-0.848907) 12.083890 / 8.074308 (4.009582) 11.023833 / 10.191392 (0.832441) 0.139217 / 0.680424 (-0.541207) 0.015183 / 0.534201 (-0.519018) 0.271637 / 0.579283 (-0.307646) 0.278910 / 0.434364 (-0.155454) 0.306891 / 0.540337 (-0.233447) 0.424412 / 1.386936 (-0.962524)

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004545 / 0.011353 (-0.006808) 0.002955 / 0.011008 (-0.008054) 0.062119 / 0.038508 (0.023611) 0.029357 / 0.023109 (0.006248) 0.240068 / 0.275898 (-0.035830) 0.273376 / 0.323480 (-0.050104) 0.003884 / 0.007986 (-0.004102) 0.002390 / 0.004328 (-0.001938) 0.048621 / 0.004250 (0.044371) 0.043867 / 0.037052 (0.006815) 0.247240 / 0.258489 (-0.011249) 0.279187 / 0.293841 (-0.014654) 0.023377 / 0.128546 (-0.105169) 0.007261 / 0.075646 (-0.068385) 0.201913 / 0.419271 (-0.217359) 0.057063 / 0.043533 (0.013530) 0.245698 / 0.255139 (-0.009441) 0.265644 / 0.283200 (-0.017556) 0.018077 / 0.141683 (-0.123606) 1.133225 / 1.452155 (-0.318930) 1.186380 / 1.492716 (-0.306336)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.089639 / 0.018006 (0.071632) 0.298918 / 0.000490 (0.298428) 0.000198 / 0.000200 (-0.000002) 0.000043 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.019037 / 0.037411 (-0.018374) 0.062580 / 0.014526 (0.048055) 0.072974 / 0.176557 (-0.103582) 0.119909 / 0.737135 (-0.617226) 0.075021 / 0.296338 (-0.221317)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.276561 / 0.215209 (0.061352) 2.697281 / 2.077655 (0.619626) 1.419772 / 1.504120 (-0.084348) 1.302079 / 1.541195 (-0.239115) 1.329143 / 1.468490 (-0.139347) 0.395528 / 4.584777 (-4.189249) 2.365788 / 3.745712 (-1.379925) 2.583802 / 5.269862 (-2.686059) 1.561983 / 4.565676 (-3.003694) 0.045269 / 0.424275 (-0.379006) 0.004826 / 0.007607 (-0.002781) 0.331041 / 0.226044 (0.104996) 3.292523 / 2.268929 (1.023595) 1.797865 / 55.444624 (-53.646759) 1.509229 / 6.876477 (-5.367248) 1.498884 / 2.142072 (-0.643188) 0.458518 / 4.805227 (-4.346709) 0.098076 / 6.500664 (-6.402588) 0.042290 / 0.075469 (-0.033179)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.922331 / 1.841788 (-0.919457) 11.605041 / 8.074308 (3.530732) 10.471664 / 10.191392 (0.280272) 0.130325 / 0.680424 (-0.550098) 0.014084 / 0.534201 (-0.520117) 0.278877 / 0.579283 (-0.300406) 0.263104 / 0.434364 (-0.171259) 0.306723 / 0.540337 (-0.233615) 0.416238 / 1.386936 (-0.970698)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005094 / 0.011353 (-0.006259) 0.002794 / 0.011008 (-0.008214) 0.048189 / 0.038508 (0.009680) 0.050409 / 0.023109 (0.027300) 0.272618 / 0.275898 (-0.003280) 0.293589 / 0.323480 (-0.029891) 0.003995 / 0.007986 (-0.003991) 0.002373 / 0.004328 (-0.001956) 0.048269 / 0.004250 (0.044018) 0.038751 / 0.037052 (0.001698) 0.273495 / 0.258489 (0.015006) 0.309244 / 0.293841 (0.015403) 0.024681 / 0.128546 (-0.103866) 0.007390 / 0.075646 (-0.068256) 0.053844 / 0.419271 (-0.365427) 0.032395 / 0.043533 (-0.011137) 0.271963 / 0.255139 (0.016824) 0.289557 / 0.283200 (0.006357) 0.018659 / 0.141683 (-0.123024) 1.154478 / 1.452155 (-0.297676) 1.199772 / 1.492716 (-0.292944)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.089771 / 0.018006 (0.071764) 0.299468 / 0.000490 (0.298978) 0.000219 / 0.000200 (0.000020) 0.000044 / 0.000054 (-0.000010)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021854 / 0.037411 (-0.015558) 0.070280 / 0.014526 (0.055754) 0.080956 / 0.176557 (-0.095600) 0.119430 / 0.737135 (-0.617705) 0.082778 / 0.296338 (-0.213561)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.304273 / 0.215209 (0.089064) 2.968264 / 2.077655 (0.890609) 1.592363 / 1.504120 (0.088243) 1.460795 / 1.541195 (-0.080400) 1.501545 / 1.468490 (0.033055) 0.411001 / 4.584777 (-4.173776) 2.464273 / 3.745712 (-1.281439) 2.524585 / 5.269862 (-2.745277) 1.537443 / 4.565676 (-3.028234) 0.046163 / 0.424275 (-0.378112) 0.004783 / 0.007607 (-0.002824) 0.354251 / 0.226044 (0.128206) 3.512087 / 2.268929 (1.243158) 1.968156 / 55.444624 (-53.476468) 1.664966 / 6.876477 (-5.211510) 1.685013 / 2.142072 (-0.457060) 0.485793 / 4.805227 (-4.319435) 0.099789 / 6.500664 (-6.400875) 0.040705 / 0.075469 (-0.034764)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.966570 / 1.841788 (-0.875218) 12.023188 / 8.074308 (3.948880) 11.122602 / 10.191392 (0.931210) 0.141002 / 0.680424 (-0.539422) 0.015955 / 0.534201 (-0.518246) 0.270293 / 0.579283 (-0.308990) 0.281839 / 0.434364 (-0.152525) 0.307279 / 0.540337 (-0.233058) 0.434687 / 1.386936 (-0.952249)

@mariosasko mariosasko requested a review from lhoestq November 17, 2023 18:48
@lhoestq
Copy link
Member

lhoestq commented Nov 20, 2023

What would be the impact for non-windows users ?

Also I wonder if a gc.collect() after the del could help to remove the PermissionError ? Or register the dataset for deletion on copy/pickle maybe ?

@github-actions
Copy link

github-actions bot commented Dec 1, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004973 / 0.011353 (-0.006380) 0.002753 / 0.011008 (-0.008256) 0.061489 / 0.038508 (0.022981) 0.051122 / 0.023109 (0.028012) 0.228783 / 0.275898 (-0.047115) 0.256982 / 0.323480 (-0.066498) 0.002873 / 0.007986 (-0.005112) 0.003544 / 0.004328 (-0.000784) 0.048721 / 0.004250 (0.044471) 0.039137 / 0.037052 (0.002085) 0.244988 / 0.258489 (-0.013501) 0.275230 / 0.293841 (-0.018611) 0.023034 / 0.128546 (-0.105513) 0.006988 / 0.075646 (-0.068658) 0.202780 / 0.419271 (-0.216492) 0.035325 / 0.043533 (-0.008207) 0.241722 / 0.255139 (-0.013417) 0.259671 / 0.283200 (-0.023528) 0.019875 / 0.141683 (-0.121808) 1.098667 / 1.452155 (-0.353488) 1.161444 / 1.492716 (-0.331272)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093591 / 0.018006 (0.075585) 0.298703 / 0.000490 (0.298213) 0.000219 / 0.000200 (0.000019) 0.000043 / 0.000054 (-0.000012)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018319 / 0.037411 (-0.019092) 0.062993 / 0.014526 (0.048467) 0.074313 / 0.176557 (-0.102244) 0.123089 / 0.737135 (-0.614046) 0.075177 / 0.296338 (-0.221162)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.268584 / 0.215209 (0.053375) 2.633116 / 2.077655 (0.555461) 1.390743 / 1.504120 (-0.113377) 1.277385 / 1.541195 (-0.263810) 1.287934 / 1.468490 (-0.180556) 0.387934 / 4.584777 (-4.196843) 2.345819 / 3.745712 (-1.399893) 2.558169 / 5.269862 (-2.711693) 1.569812 / 4.565676 (-2.995865) 0.045297 / 0.424275 (-0.378978) 0.005238 / 0.007607 (-0.002369) 0.359704 / 0.226044 (0.133659) 3.204688 / 2.268929 (0.935759) 1.753321 / 55.444624 (-53.691303) 1.492223 / 6.876477 (-5.384254) 1.498207 / 2.142072 (-0.643865) 0.459830 / 4.805227 (-4.345397) 0.098194 / 6.500664 (-6.402470) 0.042632 / 0.075469 (-0.032837)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.963020 / 1.841788 (-0.878768) 11.500470 / 8.074308 (3.426161) 10.451882 / 10.191392 (0.260490) 0.127706 / 0.680424 (-0.552718) 0.014084 / 0.534201 (-0.520117) 0.269728 / 0.579283 (-0.309555) 0.260283 / 0.434364 (-0.174080) 0.303717 / 0.540337 (-0.236620) 0.397028 / 1.386936 (-0.989908)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004823 / 0.011353 (-0.006529) 0.002751 / 0.011008 (-0.008257) 0.048719 / 0.038508 (0.010211) 0.051409 / 0.023109 (0.028300) 0.267139 / 0.275898 (-0.008759) 0.287659 / 0.323480 (-0.035821) 0.003959 / 0.007986 (-0.004027) 0.002376 / 0.004328 (-0.001953) 0.047942 / 0.004250 (0.043692) 0.039742 / 0.037052 (0.002690) 0.268348 / 0.258489 (0.009859) 0.297201 / 0.293841 (0.003360) 0.024226 / 0.128546 (-0.104320) 0.007103 / 0.075646 (-0.068544) 0.053310 / 0.419271 (-0.365961) 0.032716 / 0.043533 (-0.010816) 0.269469 / 0.255139 (0.014330) 0.287752 / 0.283200 (0.004553) 0.018191 / 0.141683 (-0.123492) 1.114086 / 1.452155 (-0.338069) 1.188054 / 1.492716 (-0.304662)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091072 / 0.018006 (0.073066) 0.300367 / 0.000490 (0.299877) 0.000218 / 0.000200 (0.000018) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.020970 / 0.037411 (-0.016441) 0.070356 / 0.014526 (0.055830) 0.081339 / 0.176557 (-0.095218) 0.120741 / 0.737135 (-0.616394) 0.081677 / 0.296338 (-0.214662)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.290405 / 0.215209 (0.075196) 2.863877 / 2.077655 (0.786222) 1.524603 / 1.504120 (0.020483) 1.397917 / 1.541195 (-0.143278) 1.402635 / 1.468490 (-0.065855) 0.405525 / 4.584777 (-4.179252) 2.432474 / 3.745712 (-1.313239) 2.446277 / 5.269862 (-2.823585) 1.550300 / 4.565676 (-3.015377) 0.046545 / 0.424275 (-0.377730) 0.004824 / 0.007607 (-0.002783) 0.343578 / 0.226044 (0.117534) 3.436850 / 2.268929 (1.167922) 1.897200 / 55.444624 (-53.547425) 1.625222 / 6.876477 (-5.251255) 1.730488 / 2.142072 (-0.411585) 0.482099 / 4.805227 (-4.323129) 0.097828 / 6.500664 (-6.402836) 0.040385 / 0.075469 (-0.035084)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.950975 / 1.841788 (-0.890812) 11.875024 / 8.074308 (3.800715) 10.430301 / 10.191392 (0.238909) 0.130546 / 0.680424 (-0.549878) 0.015423 / 0.534201 (-0.518778) 0.269592 / 0.579283 (-0.309691) 0.282505 / 0.434364 (-0.151859) 0.305567 / 0.540337 (-0.234771) 0.522142 / 1.386936 (-0.864794)

@github-actions
Copy link

github-actions bot commented Dec 1, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.004983 / 0.011353 (-0.006369) 0.003346 / 0.011008 (-0.007662) 0.062233 / 0.038508 (0.023725) 0.050246 / 0.023109 (0.027137) 0.305738 / 0.275898 (0.029839) 0.321863 / 0.323480 (-0.001617) 0.003870 / 0.007986 (-0.004116) 0.002610 / 0.004328 (-0.001718) 0.047734 / 0.004250 (0.043483) 0.037611 / 0.037052 (0.000559) 0.299121 / 0.258489 (0.040632) 0.327370 / 0.293841 (0.033529) 0.027009 / 0.128546 (-0.101537) 0.010816 / 0.075646 (-0.064830) 0.204627 / 0.419271 (-0.214645) 0.035708 / 0.043533 (-0.007825) 0.291837 / 0.255139 (0.036698) 0.313646 / 0.283200 (0.030447) 0.017277 / 0.141683 (-0.124405) 1.097907 / 1.452155 (-0.354248) 1.163203 / 1.492716 (-0.329513)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091933 / 0.018006 (0.073926) 0.298787 / 0.000490 (0.298297) 0.000204 / 0.000200 (0.000004) 0.000051 / 0.000054 (-0.000003)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018349 / 0.037411 (-0.019062) 0.061520 / 0.014526 (0.046994) 0.073159 / 0.176557 (-0.103397) 0.118657 / 0.737135 (-0.618478) 0.073601 / 0.296338 (-0.222737)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.276297 / 0.215209 (0.061088) 2.725668 / 2.077655 (0.648013) 1.458079 / 1.504120 (-0.046041) 1.331236 / 1.541195 (-0.209959) 1.347919 / 1.468490 (-0.120571) 0.565954 / 4.584777 (-4.018823) 2.380883 / 3.745712 (-1.364829) 2.800533 / 5.269862 (-2.469329) 1.740534 / 4.565676 (-2.825142) 0.065617 / 0.424275 (-0.358658) 0.004907 / 0.007607 (-0.002700) 0.335973 / 0.226044 (0.109929) 3.337405 / 2.268929 (1.068476) 1.819852 / 55.444624 (-53.624772) 1.542724 / 6.876477 (-5.333752) 1.509508 / 2.142072 (-0.632565) 0.648618 / 4.805227 (-4.156609) 0.116812 / 6.500664 (-6.383852) 0.041561 / 0.075469 (-0.033909)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.943488 / 1.841788 (-0.898299) 11.184770 / 8.074308 (3.110462) 10.406311 / 10.191392 (0.214919) 0.129841 / 0.680424 (-0.550583) 0.013736 / 0.534201 (-0.520465) 0.287281 / 0.579283 (-0.292002) 0.267403 / 0.434364 (-0.166961) 0.325319 / 0.540337 (-0.215019) 0.454207 / 1.386936 (-0.932729)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005169 / 0.011353 (-0.006183) 0.003155 / 0.011008 (-0.007854) 0.048101 / 0.038508 (0.009593) 0.048726 / 0.023109 (0.025617) 0.275768 / 0.275898 (-0.000130) 0.291209 / 0.323480 (-0.032271) 0.003984 / 0.007986 (-0.004001) 0.002586 / 0.004328 (-0.001742) 0.047751 / 0.004250 (0.043500) 0.040176 / 0.037052 (0.003124) 0.279161 / 0.258489 (0.020672) 0.297371 / 0.293841 (0.003530) 0.028502 / 0.128546 (-0.100044) 0.010103 / 0.075646 (-0.065544) 0.056920 / 0.419271 (-0.362351) 0.032174 / 0.043533 (-0.011359) 0.271925 / 0.255139 (0.016786) 0.289572 / 0.283200 (0.006372) 0.017981 / 0.141683 (-0.123702) 1.192972 / 1.452155 (-0.259183) 1.223231 / 1.492716 (-0.269485)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.091363 / 0.018006 (0.073356) 0.298106 / 0.000490 (0.297616) 0.000216 / 0.000200 (0.000016) 0.000044 / 0.000054 (-0.000011)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021509 / 0.037411 (-0.015902) 0.068377 / 0.014526 (0.053851) 0.079798 / 0.176557 (-0.096759) 0.120546 / 0.737135 (-0.616589) 0.080602 / 0.296338 (-0.215737)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.300809 / 0.215209 (0.085600) 2.921144 / 2.077655 (0.843489) 1.621096 / 1.504120 (0.116976) 1.504265 / 1.541195 (-0.036930) 1.508050 / 1.468490 (0.039560) 0.554291 / 4.584777 (-4.030486) 2.418798 / 3.745712 (-1.326914) 2.768088 / 5.269862 (-2.501773) 1.728267 / 4.565676 (-2.837410) 0.062943 / 0.424275 (-0.361332) 0.004891 / 0.007607 (-0.002716) 0.350298 / 0.226044 (0.124254) 3.442782 / 2.268929 (1.173853) 1.960163 / 55.444624 (-53.484461) 1.682000 / 6.876477 (-5.194477) 1.680311 / 2.142072 (-0.461761) 0.631201 / 4.805227 (-4.174026) 0.115211 / 6.500664 (-6.385453) 0.041279 / 0.075469 (-0.034190)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.962478 / 1.841788 (-0.879310) 11.671463 / 8.074308 (3.597155) 10.640129 / 10.191392 (0.448737) 0.130649 / 0.680424 (-0.549775) 0.016169 / 0.534201 (-0.518032) 0.286894 / 0.579283 (-0.292389) 0.269319 / 0.434364 (-0.165045) 0.324512 / 0.540337 (-0.215825) 0.550874 / 1.386936 (-0.836062)

Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Cool ! LGTM :)

@mariosasko mariosasko merged commit ecd3a22 into main Dec 1, 2023
@mariosasko mariosasko deleted the silence-temp-dir-permission-error branch December 1, 2023 15:31
@github-actions
Copy link

github-actions bot commented Dec 1, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005078 / 0.011353 (-0.006275) 0.003950 / 0.011008 (-0.007058) 0.063345 / 0.038508 (0.024837) 0.054486 / 0.023109 (0.031377) 0.243213 / 0.275898 (-0.032685) 0.264079 / 0.323480 (-0.059401) 0.003922 / 0.007986 (-0.004064) 0.002631 / 0.004328 (-0.001698) 0.048660 / 0.004250 (0.044409) 0.037205 / 0.037052 (0.000153) 0.244577 / 0.258489 (-0.013912) 0.276025 / 0.293841 (-0.017816) 0.027134 / 0.128546 (-0.101412) 0.010921 / 0.075646 (-0.064726) 0.209792 / 0.419271 (-0.209479) 0.035999 / 0.043533 (-0.007534) 0.245671 / 0.255139 (-0.009468) 0.262807 / 0.283200 (-0.020393) 0.018173 / 0.141683 (-0.123510) 1.084417 / 1.452155 (-0.367738) 1.148284 / 1.492716 (-0.344432)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.093128 / 0.018006 (0.075122) 0.301606 / 0.000490 (0.301117) 0.000221 / 0.000200 (0.000021) 0.000050 / 0.000054 (-0.000005)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.018718 / 0.037411 (-0.018693) 0.060819 / 0.014526 (0.046293) 0.073050 / 0.176557 (-0.103507) 0.120043 / 0.737135 (-0.617092) 0.075374 / 0.296338 (-0.220965)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.291080 / 0.215209 (0.075871) 2.808802 / 2.077655 (0.731148) 1.485686 / 1.504120 (-0.018434) 1.354356 / 1.541195 (-0.186839) 1.347863 / 1.468490 (-0.120627) 0.571501 / 4.584777 (-4.013276) 2.377960 / 3.745712 (-1.367752) 2.768023 / 5.269862 (-2.501839) 1.754360 / 4.565676 (-2.811316) 0.063115 / 0.424275 (-0.361160) 0.004941 / 0.007607 (-0.002666) 0.338281 / 0.226044 (0.112237) 3.340587 / 2.268929 (1.071658) 1.849479 / 55.444624 (-53.595145) 1.551846 / 6.876477 (-5.324631) 1.539090 / 2.142072 (-0.602983) 0.644522 / 4.805227 (-4.160705) 0.117398 / 6.500664 (-6.383266) 0.042239 / 0.075469 (-0.033230)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.949496 / 1.841788 (-0.892291) 11.548352 / 8.074308 (3.474044) 10.478065 / 10.191392 (0.286673) 0.129534 / 0.680424 (-0.550890) 0.015378 / 0.534201 (-0.518822) 0.287221 / 0.579283 (-0.292062) 0.262944 / 0.434364 (-0.171419) 0.321727 / 0.540337 (-0.218611) 0.432354 / 1.386936 (-0.954582)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005256 / 0.011353 (-0.006097) 0.003491 / 0.011008 (-0.007517) 0.048647 / 0.038508 (0.010139) 0.054011 / 0.023109 (0.030901) 0.271786 / 0.275898 (-0.004112) 0.291964 / 0.323480 (-0.031516) 0.004035 / 0.007986 (-0.003950) 0.002671 / 0.004328 (-0.001657) 0.048108 / 0.004250 (0.043857) 0.040421 / 0.037052 (0.003368) 0.278594 / 0.258489 (0.020105) 0.300707 / 0.293841 (0.006867) 0.028924 / 0.128546 (-0.099623) 0.010600 / 0.075646 (-0.065047) 0.057649 / 0.419271 (-0.361623) 0.034221 / 0.043533 (-0.009312) 0.276692 / 0.255139 (0.021553) 0.293545 / 0.283200 (0.010345) 0.017908 / 0.141683 (-0.123775) 1.135108 / 1.452155 (-0.317047) 1.190823 / 1.492716 (-0.301893)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.095243 / 0.018006 (0.077237) 0.301885 / 0.000490 (0.301396) 0.000235 / 0.000200 (0.000035) 0.000056 / 0.000054 (0.000001)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.021561 / 0.037411 (-0.015850) 0.069054 / 0.014526 (0.054529) 0.080466 / 0.176557 (-0.096091) 0.121323 / 0.737135 (-0.615812) 0.081891 / 0.296338 (-0.214448)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.293957 / 0.215209 (0.078748) 2.869035 / 2.077655 (0.791380) 1.608837 / 1.504120 (0.104717) 1.440594 / 1.541195 (-0.100601) 1.464775 / 1.468490 (-0.003715) 0.565663 / 4.584777 (-4.019114) 2.439456 / 3.745712 (-1.306256) 2.794775 / 5.269862 (-2.475087) 1.750026 / 4.565676 (-2.815651) 0.063291 / 0.424275 (-0.360984) 0.004930 / 0.007607 (-0.002677) 0.347169 / 0.226044 (0.121125) 3.408260 / 2.268929 (1.139331) 1.920933 / 55.444624 (-53.523691) 1.648821 / 6.876477 (-5.227656) 1.639022 / 2.142072 (-0.503051) 0.642870 / 4.805227 (-4.162357) 0.117077 / 6.500664 (-6.383587) 0.040784 / 0.075469 (-0.034685)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 0.993501 / 1.841788 (-0.848287) 12.012423 / 8.074308 (3.938115) 10.740932 / 10.191392 (0.549540) 0.132409 / 0.680424 (-0.548015) 0.015294 / 0.534201 (-0.518907) 0.287902 / 0.579283 (-0.291381) 0.281350 / 0.434364 (-0.153014) 0.329201 / 0.540337 (-0.211137) 0.553199 / 1.386936 (-0.833737)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants