Skip to content

Conversation

@clefourrier
Copy link
Member

@clefourrier clefourrier commented Aug 21, 2023

When I try to push to an arrow repo (can provide the link on Slack), it uploads the files but fails to update the metadata, with

  File "app.py", line 123, in add_new_eval
    eval_results[level].push_to_hub(my_repo, token=TOKEN, split=SPLIT)
  File "blabla_my_env_path/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 5501, in push_to_hub
    if not metadata_configs:
UnboundLocalError: local variable 'metadata_configs' referenced before assignment

This fixes it.

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 21, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006874 / 0.011353 (-0.004479) 0.004276 / 0.011008 (-0.006732) 0.085198 / 0.038508 (0.046690) 0.084281 / 0.023109 (0.061171) 0.344767 / 0.275898 (0.068869) 0.377798 / 0.323480 (0.054318) 0.005656 / 0.007986 (-0.002330) 0.003601 / 0.004328 (-0.000727) 0.065486 / 0.004250 (0.061235) 0.056191 / 0.037052 (0.019139) 0.351412 / 0.258489 (0.092923) 0.398591 / 0.293841 (0.104750) 0.031662 / 0.128546 (-0.096884) 0.008901 / 0.075646 (-0.066745) 0.290423 / 0.419271 (-0.128849) 0.053793 / 0.043533 (0.010260) 0.347968 / 0.255139 (0.092829) 0.376978 / 0.283200 (0.093778) 0.026745 / 0.141683 (-0.114938) 1.514119 / 1.452155 (0.061964) 1.580920 / 1.492716 (0.088203)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.273648 / 0.018006 (0.255642) 0.575176 / 0.000490 (0.574686) 0.003557 / 0.000200 (0.003357) 0.000093 / 0.000054 (0.000038)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031714 / 0.037411 (-0.005697) 0.089166 / 0.014526 (0.074640) 0.101525 / 0.176557 (-0.075032) 0.161855 / 0.737135 (-0.575281) 0.101391 / 0.296338 (-0.194947)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.380947 / 0.215209 (0.165738) 3.800527 / 2.077655 (1.722873) 1.820789 / 1.504120 (0.316669) 1.657327 / 1.541195 (0.116132) 1.776242 / 1.468490 (0.307752) 0.486954 / 4.584777 (-4.097823) 3.688340 / 3.745712 (-0.057372) 3.354453 / 5.269862 (-1.915409) 2.119995 / 4.565676 (-2.445682) 0.057446 / 0.424275 (-0.366829) 0.007752 / 0.007607 (0.000145) 0.461907 / 0.226044 (0.235862) 4.617870 / 2.268929 (2.348942) 2.337025 / 55.444624 (-53.107599) 1.964770 / 6.876477 (-4.911707) 2.252066 / 2.142072 (0.109993) 0.591585 / 4.805227 (-4.213642) 0.134655 / 6.500664 (-6.366009) 0.060646 / 0.075469 (-0.014823)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.263271 / 1.841788 (-0.578517) 20.822286 / 8.074308 (12.747978) 14.710256 / 10.191392 (4.518864) 0.167285 / 0.680424 (-0.513139) 0.018302 / 0.534201 (-0.515899) 0.401023 / 0.579283 (-0.178260) 0.428956 / 0.434364 (-0.005407) 0.466120 / 0.540337 (-0.074218) 0.637868 / 1.386936 (-0.749069)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.007174 / 0.011353 (-0.004179) 0.004418 / 0.011008 (-0.006590) 0.065731 / 0.038508 (0.027223) 0.090457 / 0.023109 (0.067348) 0.387306 / 0.275898 (0.111408) 0.427178 / 0.323480 (0.103698) 0.005699 / 0.007986 (-0.002286) 0.003662 / 0.004328 (-0.000666) 0.066190 / 0.004250 (0.061940) 0.062860 / 0.037052 (0.025808) 0.388855 / 0.258489 (0.130366) 0.427853 / 0.293841 (0.134012) 0.032770 / 0.128546 (-0.095776) 0.008780 / 0.075646 (-0.066866) 0.071156 / 0.419271 (-0.348116) 0.050174 / 0.043533 (0.006641) 0.385254 / 0.255139 (0.130115) 0.405069 / 0.283200 (0.121869) 0.025561 / 0.141683 (-0.116122) 1.506907 / 1.452155 (0.054752) 1.543270 / 1.492716 (0.050554)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.304651 / 0.018006 (0.286645) 0.577269 / 0.000490 (0.576780) 0.004479 / 0.000200 (0.004279) 0.000127 / 0.000054 (0.000073)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.034070 / 0.037411 (-0.003341) 0.097664 / 0.014526 (0.083138) 0.106969 / 0.176557 (-0.069588) 0.163093 / 0.737135 (-0.574043) 0.109384 / 0.296338 (-0.186955)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.414823 / 0.215209 (0.199614) 4.148390 / 2.077655 (2.070735) 2.114038 / 1.504120 (0.609918) 1.959316 / 1.541195 (0.418121) 2.098138 / 1.468490 (0.629648) 0.486338 / 4.584777 (-4.098439) 3.642850 / 3.745712 (-0.102863) 3.458311 / 5.269862 (-1.811551) 2.185662 / 4.565676 (-2.380014) 0.057555 / 0.424275 (-0.366720) 0.007522 / 0.007607 (-0.000085) 0.497975 / 0.226044 (0.271931) 4.971528 / 2.268929 (2.702600) 2.614087 / 55.444624 (-52.830537) 2.288406 / 6.876477 (-4.588070) 2.564067 / 2.142072 (0.421995) 0.582248 / 4.805227 (-4.222979) 0.134931 / 6.500664 (-6.365733) 0.062689 / 0.075469 (-0.012780)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.343331 / 1.841788 (-0.498457) 21.398950 / 8.074308 (13.324642) 14.620971 / 10.191392 (4.429579) 0.169779 / 0.680424 (-0.510644) 0.018683 / 0.534201 (-0.515518) 0.396152 / 0.579283 (-0.183131) 0.409596 / 0.434364 (-0.024768) 0.482875 / 0.540337 (-0.057463) 0.659977 / 1.386936 (-0.726959)

@clefourrier clefourrier requested a review from lhoestq August 21, 2023 15:40
Copy link
Member

@lhoestq lhoestq left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good catch !

@lhoestq lhoestq merged commit 8b8e6ee into main Aug 21, 2023
@lhoestq lhoestq deleted the clefourrier-patch-1 branch August 21, 2023 16:18
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006662 / 0.011353 (-0.004691) 0.003959 / 0.011008 (-0.007049) 0.084447 / 0.038508 (0.045939) 0.070267 / 0.023109 (0.047158) 0.310301 / 0.275898 (0.034403) 0.339866 / 0.323480 (0.016386) 0.004008 / 0.007986 (-0.003977) 0.003270 / 0.004328 (-0.001058) 0.064997 / 0.004250 (0.060746) 0.053151 / 0.037052 (0.016099) 0.327867 / 0.258489 (0.069378) 0.368560 / 0.293841 (0.074719) 0.031436 / 0.128546 (-0.097111) 0.008547 / 0.075646 (-0.067099) 0.288513 / 0.419271 (-0.130758) 0.051833 / 0.043533 (0.008300) 0.312660 / 0.255139 (0.057521) 0.347180 / 0.283200 (0.063980) 0.024982 / 0.141683 (-0.116701) 1.472487 / 1.452155 (0.020333) 1.550138 / 1.492716 (0.057422)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.208443 / 0.018006 (0.190437) 0.451927 / 0.000490 (0.451437) 0.004452 / 0.000200 (0.004252) 0.000082 / 0.000054 (0.000027)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029164 / 0.037411 (-0.008247) 0.085801 / 0.014526 (0.071275) 0.096229 / 0.176557 (-0.080327) 0.153063 / 0.737135 (-0.584072) 0.097712 / 0.296338 (-0.198626)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.383969 / 0.215209 (0.168760) 3.829216 / 2.077655 (1.751561) 1.854466 / 1.504120 (0.350346) 1.684149 / 1.541195 (0.142954) 1.759422 / 1.468490 (0.290932) 0.480229 / 4.584777 (-4.104548) 3.653363 / 3.745712 (-0.092349) 3.264456 / 5.269862 (-2.005406) 2.020579 / 4.565676 (-2.545097) 0.056920 / 0.424275 (-0.367355) 0.007625 / 0.007607 (0.000018) 0.458559 / 0.226044 (0.232515) 4.580288 / 2.268929 (2.311359) 2.353783 / 55.444624 (-53.090841) 1.967223 / 6.876477 (-4.909253) 2.182707 / 2.142072 (0.040634) 0.631341 / 4.805227 (-4.173886) 0.141656 / 6.500664 (-6.359008) 0.059918 / 0.075469 (-0.015551)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.279635 / 1.841788 (-0.562153) 19.725763 / 8.074308 (11.651455) 14.477946 / 10.191392 (4.286554) 0.164360 / 0.680424 (-0.516064) 0.018286 / 0.534201 (-0.515915) 0.394935 / 0.579283 (-0.184348) 0.419638 / 0.434364 (-0.014726) 0.460366 / 0.540337 (-0.079972) 0.636876 / 1.386936 (-0.750060)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006568 / 0.011353 (-0.004785) 0.004270 / 0.011008 (-0.006738) 0.065522 / 0.038508 (0.027014) 0.071597 / 0.023109 (0.048487) 0.394929 / 0.275898 (0.119031) 0.427548 / 0.323480 (0.104068) 0.005320 / 0.007986 (-0.002665) 0.003366 / 0.004328 (-0.000962) 0.065780 / 0.004250 (0.061530) 0.055390 / 0.037052 (0.018338) 0.397950 / 0.258489 (0.139461) 0.435800 / 0.293841 (0.141959) 0.031816 / 0.128546 (-0.096730) 0.008555 / 0.075646 (-0.067091) 0.072110 / 0.419271 (-0.347161) 0.049077 / 0.043533 (0.005544) 0.390065 / 0.255139 (0.134926) 0.410294 / 0.283200 (0.127094) 0.023389 / 0.141683 (-0.118294) 1.491491 / 1.452155 (0.039336) 1.551057 / 1.492716 (0.058341)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.243869 / 0.018006 (0.225862) 0.451961 / 0.000490 (0.451471) 0.019834 / 0.000200 (0.019634) 0.000114 / 0.000054 (0.000059)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031031 / 0.037411 (-0.006380) 0.088189 / 0.014526 (0.073663) 0.101743 / 0.176557 (-0.074814) 0.155236 / 0.737135 (-0.581899) 0.101245 / 0.296338 (-0.195094)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.422178 / 0.215209 (0.206969) 4.199989 / 2.077655 (2.122334) 2.228816 / 1.504120 (0.724696) 2.057172 / 1.541195 (0.515978) 2.162651 / 1.468490 (0.694161) 0.491186 / 4.584777 (-4.093591) 3.666221 / 3.745712 (-0.079491) 3.289531 / 5.269862 (-1.980331) 2.050027 / 4.565676 (-2.515650) 0.057464 / 0.424275 (-0.366811) 0.007379 / 0.007607 (-0.000228) 0.506532 / 0.226044 (0.280487) 5.066385 / 2.268929 (2.797456) 2.694405 / 55.444624 (-52.750219) 2.372200 / 6.876477 (-4.504277) 2.562724 / 2.142072 (0.420652) 0.615474 / 4.805227 (-4.189753) 0.148284 / 6.500664 (-6.352380) 0.061380 / 0.075469 (-0.014089)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.332649 / 1.841788 (-0.509139) 20.591063 / 8.074308 (12.516755) 14.105253 / 10.191392 (3.913861) 0.151886 / 0.680424 (-0.528537) 0.018200 / 0.534201 (-0.516001) 0.395278 / 0.579283 (-0.184005) 0.407113 / 0.434364 (-0.027251) 0.473168 / 0.540337 (-0.067170) 0.660766 / 1.386936 (-0.726170)

albertvillanova pushed a commit that referenced this pull request Oct 24, 2023
…o.json` but no README (#6164)

MetadataConfigs not initialized when the repo has a `datasets_info.json` but no README
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants