Skip to content

Conversation

@albertvillanova
Copy link
Member

@albertvillanova albertvillanova commented Aug 7, 2023

This PR fixes 3 authentication issues:

  • Fix authentication when passing token.
  • Fix authentication in Audio.decode_example and Image.decode_example.
  • Fix authentication to resolve data_files in repositories without script.

This PR also fixes our CI so that we properly test when passing token and we do not use the token stored in HfFolder.

Fix #6126.

Details

Fix authentication when passing token

See c0a77dc

The root issue was caused when the token was set in an already instantiated DownloadConfig and thus not propagated to self._storage_options:

download_config.token = token

As this usage pattern is very common, the fix consists in overriding DownloadConfig.__setattr__.

This fixes authentication issues in the following functions:

  • load_dataset and load_dataset_builder
  • Dataset.push_to_hub and Dataset.push_to_hub
  • inspect.get_dataset_config_info, inspect.get_dataset_infos and inspect.get_dataset_split_names

Fix authentication in Audio.decode_example and Image.decode_example.

See: 58e62af

The token was not set because the repo_id was wrongly tried to be parsed from an HTTP URL ("http://..."), instead of an HFFileSystem URL ("hf://")

Fix authentication to resolve data_files in repositories without script

See: e4684fc

This is fixed by passing download_config to the function create_builder_configs_from_metadata_configs

@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Aug 7, 2023

The documentation is not available anymore as the PR was closed or merged.

@github-actions
Copy link

github-actions bot commented Aug 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006103 / 0.011353 (-0.005250) 0.003588 / 0.011008 (-0.007420) 0.080335 / 0.038508 (0.041827) 0.059634 / 0.023109 (0.036525) 0.356093 / 0.275898 (0.080195) 0.407376 / 0.323480 (0.083896) 0.005343 / 0.007986 (-0.002643) 0.002928 / 0.004328 (-0.001400) 0.062580 / 0.004250 (0.058330) 0.047544 / 0.037052 (0.010491) 0.364305 / 0.258489 (0.105816) 0.421463 / 0.293841 (0.127623) 0.027249 / 0.128546 (-0.101298) 0.008010 / 0.075646 (-0.067636) 0.262543 / 0.419271 (-0.156728) 0.044978 / 0.043533 (0.001445) 0.339344 / 0.255139 (0.084205) 0.395288 / 0.283200 (0.112088) 0.021425 / 0.141683 (-0.120258) 1.439767 / 1.452155 (-0.012387) 1.498081 / 1.492716 (0.005365)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.196976 / 0.018006 (0.178970) 0.435383 / 0.000490 (0.434893) 0.004559 / 0.000200 (0.004359) 0.000071 / 0.000054 (0.000016)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023653 / 0.037411 (-0.013759) 0.072944 / 0.014526 (0.058418) 0.083651 / 0.176557 (-0.092906) 0.144590 / 0.737135 (-0.592545) 0.084844 / 0.296338 (-0.211494)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.398752 / 0.215209 (0.183543) 3.959539 / 2.077655 (1.881884) 1.935277 / 1.504120 (0.431157) 1.751994 / 1.541195 (0.210799) 1.828386 / 1.468490 (0.359896) 0.500492 / 4.584777 (-4.084284) 3.086630 / 3.745712 (-0.659082) 2.851664 / 5.269862 (-2.418198) 1.869792 / 4.565676 (-2.695885) 0.058509 / 0.424275 (-0.365766) 0.006500 / 0.007607 (-0.001107) 0.467468 / 0.226044 (0.241424) 4.686168 / 2.268929 (2.417240) 2.427632 / 55.444624 (-53.016993) 2.193194 / 6.876477 (-4.683283) 2.408574 / 2.142072 (0.266501) 0.592173 / 4.805227 (-4.213054) 0.125381 / 6.500664 (-6.375283) 0.060679 / 0.075469 (-0.014790)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.236066 / 1.841788 (-0.605722) 18.591689 / 8.074308 (10.517381) 14.138774 / 10.191392 (3.947382) 0.147455 / 0.680424 (-0.532968) 0.016921 / 0.534201 (-0.517280) 0.328129 / 0.579283 (-0.251154) 0.348872 / 0.434364 (-0.085491) 0.380311 / 0.540337 (-0.160026) 0.532901 / 1.386936 (-0.854035)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005914 / 0.011353 (-0.005438) 0.003614 / 0.011008 (-0.007394) 0.062857 / 0.038508 (0.024349) 0.060633 / 0.023109 (0.037524) 0.419684 / 0.275898 (0.143786) 0.449025 / 0.323480 (0.125546) 0.004595 / 0.007986 (-0.003391) 0.002861 / 0.004328 (-0.001467) 0.063253 / 0.004250 (0.059003) 0.048770 / 0.037052 (0.011718) 0.419838 / 0.258489 (0.161349) 0.465183 / 0.293841 (0.171342) 0.027350 / 0.128546 (-0.101196) 0.008065 / 0.075646 (-0.067582) 0.068321 / 0.419271 (-0.350950) 0.041083 / 0.043533 (-0.002449) 0.400831 / 0.255139 (0.145692) 0.449286 / 0.283200 (0.166086) 0.020472 / 0.141683 (-0.121210) 1.437215 / 1.452155 (-0.014940) 1.503679 / 1.492716 (0.010963)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.230764 / 0.018006 (0.212758) 0.420774 / 0.000490 (0.420285) 0.004012 / 0.000200 (0.003812) 0.000069 / 0.000054 (0.000014)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026009 / 0.037411 (-0.011402) 0.077943 / 0.014526 (0.063417) 0.087281 / 0.176557 (-0.089276) 0.139422 / 0.737135 (-0.597713) 0.089090 / 0.296338 (-0.207248)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.417298 / 0.215209 (0.202088) 4.152303 / 2.077655 (2.074648) 2.179996 / 1.504120 (0.675877) 2.020619 / 1.541195 (0.479424) 2.085241 / 1.468490 (0.616751) 0.501111 / 4.584777 (-4.083666) 3.079849 / 3.745712 (-0.665863) 2.820607 / 5.269862 (-2.449255) 1.863988 / 4.565676 (-2.701688) 0.057662 / 0.424275 (-0.366613) 0.006778 / 0.007607 (-0.000830) 0.498661 / 0.226044 (0.272616) 4.986503 / 2.268929 (2.717574) 2.620676 / 55.444624 (-52.823949) 2.297546 / 6.876477 (-4.578931) 2.458148 / 2.142072 (0.316075) 0.599490 / 4.805227 (-4.205738) 0.125102 / 6.500664 (-6.375562) 0.061411 / 0.075469 (-0.014059)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.323816 / 1.841788 (-0.517971) 18.462614 / 8.074308 (10.388306) 13.845826 / 10.191392 (3.654434) 0.146115 / 0.680424 (-0.534309) 0.016862 / 0.534201 (-0.517339) 0.335449 / 0.579283 (-0.243834) 0.343792 / 0.434364 (-0.090572) 0.394068 / 0.540337 (-0.146269) 0.536378 / 1.386936 (-0.850558)

@github-actions
Copy link

github-actions bot commented Aug 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006825 / 0.011353 (-0.004527) 0.004005 / 0.011008 (-0.007003) 0.085504 / 0.038508 (0.046996) 0.077252 / 0.023109 (0.054143) 0.351891 / 0.275898 (0.075993) 0.383404 / 0.323480 (0.059924) 0.004153 / 0.007986 (-0.003833) 0.003344 / 0.004328 (-0.000985) 0.064936 / 0.004250 (0.060685) 0.057653 / 0.037052 (0.020601) 0.368155 / 0.258489 (0.109666) 0.406122 / 0.293841 (0.112282) 0.032049 / 0.128546 (-0.096497) 0.008698 / 0.075646 (-0.066949) 0.292394 / 0.419271 (-0.126878) 0.053634 / 0.043533 (0.010101) 0.358273 / 0.255139 (0.103134) 0.378441 / 0.283200 (0.095242) 0.026928 / 0.141683 (-0.114755) 1.458718 / 1.452155 (0.006563) 1.536231 / 1.492716 (0.043515)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.213956 / 0.018006 (0.195950) 0.458620 / 0.000490 (0.458130) 0.002718 / 0.000200 (0.002519) 0.000078 / 0.000054 (0.000023)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027870 / 0.037411 (-0.009541) 0.083922 / 0.014526 (0.069396) 0.152056 / 0.176557 (-0.024501) 0.151584 / 0.737135 (-0.585552) 0.095698 / 0.296338 (-0.200641)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.407762 / 0.215209 (0.192553) 4.074324 / 2.077655 (1.996669) 2.089929 / 1.504120 (0.585809) 1.920024 / 1.541195 (0.378829) 2.013410 / 1.468490 (0.544920) 0.486056 / 4.584777 (-4.098721) 3.656869 / 3.745712 (-0.088843) 3.304008 / 5.269862 (-1.965854) 2.074363 / 4.565676 (-2.491313) 0.057293 / 0.424275 (-0.366982) 0.007240 / 0.007607 (-0.000367) 0.482696 / 0.226044 (0.256652) 4.833251 / 2.268929 (2.564322) 2.570391 / 55.444624 (-52.874233) 2.220619 / 6.876477 (-4.655857) 2.426316 / 2.142072 (0.284243) 0.584811 / 4.805227 (-4.220416) 0.134907 / 6.500664 (-6.365757) 0.061115 / 0.075469 (-0.014354)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.251969 / 1.841788 (-0.589818) 19.601611 / 8.074308 (11.527303) 14.190217 / 10.191392 (3.998825) 0.166296 / 0.680424 (-0.514128) 0.018334 / 0.534201 (-0.515867) 0.395172 / 0.579283 (-0.184111) 0.410440 / 0.434364 (-0.023924) 0.462263 / 0.540337 (-0.078074) 0.645504 / 1.386936 (-0.741432)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006991 / 0.011353 (-0.004362) 0.004084 / 0.011008 (-0.006924) 0.065208 / 0.038508 (0.026700) 0.077809 / 0.023109 (0.054699) 0.386472 / 0.275898 (0.110574) 0.418686 / 0.323480 (0.095206) 0.005346 / 0.007986 (-0.002640) 0.003416 / 0.004328 (-0.000912) 0.066209 / 0.004250 (0.061958) 0.057517 / 0.037052 (0.020465) 0.407684 / 0.258489 (0.149195) 0.425438 / 0.293841 (0.131597) 0.032166 / 0.128546 (-0.096380) 0.008662 / 0.075646 (-0.066985) 0.071712 / 0.419271 (-0.347560) 0.049764 / 0.043533 (0.006231) 0.394882 / 0.255139 (0.139743) 0.403589 / 0.283200 (0.120389) 0.023688 / 0.141683 (-0.117995) 1.468488 / 1.452155 (0.016334) 1.533118 / 1.492716 (0.040401)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.252949 / 0.018006 (0.234943) 0.447355 / 0.000490 (0.446865) 0.011721 / 0.000200 (0.011521) 0.000107 / 0.000054 (0.000052)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031444 / 0.037411 (-0.005968) 0.089390 / 0.014526 (0.074864) 0.100103 / 0.176557 (-0.076454) 0.153301 / 0.737135 (-0.583835) 0.101336 / 0.296338 (-0.195003)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.408574 / 0.215209 (0.193365) 4.073135 / 2.077655 (1.995480) 2.086550 / 1.504120 (0.582430) 1.930651 / 1.541195 (0.389457) 2.013548 / 1.468490 (0.545058) 0.477235 / 4.584777 (-4.107542) 3.547545 / 3.745712 (-0.198167) 3.321957 / 5.269862 (-1.947905) 2.057705 / 4.565676 (-2.507971) 0.056730 / 0.424275 (-0.367545) 0.007882 / 0.007607 (0.000275) 0.487297 / 0.226044 (0.261253) 4.874184 / 2.268929 (2.605255) 2.631129 / 55.444624 (-52.813496) 2.235755 / 6.876477 (-4.640722) 2.463329 / 2.142072 (0.321257) 0.578308 / 4.805227 (-4.226919) 0.132726 / 6.500664 (-6.367938) 0.064883 / 0.075469 (-0.010586)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.347564 / 1.841788 (-0.494223) 20.192973 / 8.074308 (12.118665) 14.563553 / 10.191392 (4.372161) 0.168244 / 0.680424 (-0.512180) 0.018638 / 0.534201 (-0.515563) 0.394789 / 0.579283 (-0.184494) 0.419677 / 0.434364 (-0.014687) 0.480274 / 0.540337 (-0.060063) 0.641204 / 1.386936 (-0.745732)

@github-actions
Copy link

github-actions bot commented Aug 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005939 / 0.011353 (-0.005413) 0.003457 / 0.011008 (-0.007551) 0.079985 / 0.038508 (0.041477) 0.056492 / 0.023109 (0.033383) 0.312356 / 0.275898 (0.036458) 0.354038 / 0.323480 (0.030558) 0.004551 / 0.007986 (-0.003435) 0.002828 / 0.004328 (-0.001501) 0.062369 / 0.004250 (0.058119) 0.044712 / 0.037052 (0.007660) 0.318244 / 0.258489 (0.059755) 0.361977 / 0.293841 (0.068136) 0.026460 / 0.128546 (-0.102086) 0.007928 / 0.075646 (-0.067719) 0.261378 / 0.419271 (-0.157894) 0.044209 / 0.043533 (0.000676) 0.313931 / 0.255139 (0.058792) 0.339553 / 0.283200 (0.056354) 0.019776 / 0.141683 (-0.121907) 1.443126 / 1.452155 (-0.009029) 1.508149 / 1.492716 (0.015432)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.183801 / 0.018006 (0.165795) 0.427967 / 0.000490 (0.427477) 0.002028 / 0.000200 (0.001828) 0.000062 / 0.000054 (0.000007)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.023697 / 0.037411 (-0.013715) 0.072128 / 0.014526 (0.057602) 0.083701 / 0.176557 (-0.092855) 0.142821 / 0.737135 (-0.594315) 0.082276 / 0.296338 (-0.214063)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.434427 / 0.215209 (0.219218) 4.325962 / 2.077655 (2.248308) 2.277115 / 1.504120 (0.772995) 2.093736 / 1.541195 (0.552541) 2.127984 / 1.468490 (0.659494) 0.502336 / 4.584777 (-4.082441) 3.023243 / 3.745712 (-0.722469) 2.805154 / 5.269862 (-2.464708) 1.821273 / 4.565676 (-2.744403) 0.057480 / 0.424275 (-0.366795) 0.006365 / 0.007607 (-0.001242) 0.508258 / 0.226044 (0.282213) 5.087950 / 2.268929 (2.819022) 2.705029 / 55.444624 (-52.739596) 2.378392 / 6.876477 (-4.498085) 2.515380 / 2.142072 (0.373307) 0.589283 / 4.805227 (-4.215944) 0.125719 / 6.500664 (-6.374945) 0.061074 / 0.075469 (-0.014395)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.221895 / 1.841788 (-0.619893) 18.025917 / 8.074308 (9.951609) 13.556901 / 10.191392 (3.365509) 0.142614 / 0.680424 (-0.537809) 0.016731 / 0.534201 (-0.517469) 0.328374 / 0.579283 (-0.250910) 0.342553 / 0.434364 (-0.091811) 0.374502 / 0.540337 (-0.165836) 0.534173 / 1.386936 (-0.852763)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.005817 / 0.011353 (-0.005536) 0.003500 / 0.011008 (-0.007509) 0.062240 / 0.038508 (0.023732) 0.058128 / 0.023109 (0.035019) 0.424014 / 0.275898 (0.148116) 0.468453 / 0.323480 (0.144973) 0.004641 / 0.007986 (-0.003345) 0.002821 / 0.004328 (-0.001508) 0.062180 / 0.004250 (0.057930) 0.047578 / 0.037052 (0.010526) 0.427367 / 0.258489 (0.168878) 0.467889 / 0.293841 (0.174048) 0.027144 / 0.128546 (-0.101403) 0.007969 / 0.075646 (-0.067678) 0.067764 / 0.419271 (-0.351508) 0.040719 / 0.043533 (-0.002814) 0.423663 / 0.255139 (0.168524) 0.458556 / 0.283200 (0.175356) 0.019196 / 0.141683 (-0.122487) 1.471546 / 1.452155 (0.019392) 1.547541 / 1.492716 (0.054825)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.228777 / 0.018006 (0.210770) 0.406663 / 0.000490 (0.406173) 0.003688 / 0.000200 (0.003488) 0.000075 / 0.000054 (0.000021)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.025494 / 0.037411 (-0.011917) 0.076339 / 0.014526 (0.061814) 0.084233 / 0.176557 (-0.092324) 0.136995 / 0.737135 (-0.600140) 0.085443 / 0.296338 (-0.210895)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.420441 / 0.215209 (0.205232) 4.187018 / 2.077655 (2.109363) 2.142139 / 1.504120 (0.638019) 1.974530 / 1.541195 (0.433335) 2.027321 / 1.468490 (0.558831) 0.498116 / 4.584777 (-4.086661) 2.988514 / 3.745712 (-0.757198) 2.782046 / 5.269862 (-2.487816) 1.821725 / 4.565676 (-2.743951) 0.057711 / 0.424275 (-0.366564) 0.006664 / 0.007607 (-0.000944) 0.491015 / 0.226044 (0.264971) 4.921037 / 2.268929 (2.652108) 2.574964 / 55.444624 (-52.869661) 2.251703 / 6.876477 (-4.624774) 2.361154 / 2.142072 (0.219082) 0.593362 / 4.805227 (-4.211865) 0.126107 / 6.500664 (-6.374557) 0.061840 / 0.075469 (-0.013630)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.327459 / 1.841788 (-0.514328) 18.062960 / 8.074308 (9.988652) 13.669253 / 10.191392 (3.477861) 0.130719 / 0.680424 (-0.549705) 0.016564 / 0.534201 (-0.517637) 0.335821 / 0.579283 (-0.243462) 0.341691 / 0.434364 (-0.092673) 0.392651 / 0.540337 (-0.147686) 0.529650 / 1.386936 (-0.857286)

@github-actions
Copy link

github-actions bot commented Aug 7, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009625 / 0.011353 (-0.001728) 0.005354 / 0.011008 (-0.005654) 0.114350 / 0.038508 (0.075842) 0.086637 / 0.023109 (0.063528) 0.465381 / 0.275898 (0.189483) 0.490411 / 0.323480 (0.166931) 0.006575 / 0.007986 (-0.001411) 0.004287 / 0.004328 (-0.000041) 0.093134 / 0.004250 (0.088884) 0.060209 / 0.037052 (0.023156) 0.459570 / 0.258489 (0.201080) 0.523320 / 0.293841 (0.229479) 0.047943 / 0.128546 (-0.080603) 0.014764 / 0.075646 (-0.060882) 0.383887 / 0.419271 (-0.035384) 0.069864 / 0.043533 (0.026331) 0.469122 / 0.255139 (0.213983) 0.509953 / 0.283200 (0.226753) 0.037800 / 0.141683 (-0.103883) 1.877589 / 1.452155 (0.425434) 2.014913 / 1.492716 (0.522197)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.309146 / 0.018006 (0.291140) 0.644390 / 0.000490 (0.643900) 0.005017 / 0.000200 (0.004817) 0.000102 / 0.000054 (0.000048)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032964 / 0.037411 (-0.004447) 0.103236 / 0.014526 (0.088711) 0.119950 / 0.176557 (-0.056607) 0.207674 / 0.737135 (-0.529461) 0.117278 / 0.296338 (-0.179060)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.605464 / 0.215209 (0.390255) 6.027805 / 2.077655 (3.950150) 2.719725 / 1.504120 (1.215605) 2.262752 / 1.541195 (0.721558) 2.330310 / 1.468490 (0.861820) 0.862537 / 4.584777 (-3.722240) 5.347080 / 3.745712 (1.601368) 4.792170 / 5.269862 (-0.477691) 3.103694 / 4.565676 (-1.461983) 0.103646 / 0.424275 (-0.320629) 0.009411 / 0.007607 (0.001804) 0.743052 / 0.226044 (0.517008) 7.289684 / 2.268929 (5.020755) 3.436530 / 55.444624 (-52.008094) 2.722440 / 6.876477 (-4.154036) 2.952380 / 2.142072 (0.810308) 1.047688 / 4.805227 (-3.757539) 0.212724 / 6.500664 (-6.287940) 0.081473 / 0.075469 (0.006004)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.714437 / 1.841788 (-0.127351) 24.384330 / 8.074308 (16.310022) 22.444162 / 10.191392 (12.252770) 0.226264 / 0.680424 (-0.454160) 0.030530 / 0.534201 (-0.503671) 0.473999 / 0.579283 (-0.105284) 0.575005 / 0.434364 (0.140641) 0.542789 / 0.540337 (0.002451) 0.776079 / 1.386936 (-0.610857)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.009366 / 0.011353 (-0.001987) 0.005239 / 0.011008 (-0.005769) 0.085116 / 0.038508 (0.046608) 0.089600 / 0.023109 (0.066491) 0.485778 / 0.275898 (0.209880) 0.540054 / 0.323480 (0.216574) 0.006290 / 0.007986 (-0.001695) 0.004054 / 0.004328 (-0.000274) 0.083535 / 0.004250 (0.079284) 0.067200 / 0.037052 (0.030148) 0.519520 / 0.258489 (0.261031) 0.544049 / 0.293841 (0.250208) 0.054300 / 0.128546 (-0.074246) 0.013650 / 0.075646 (-0.061996) 0.102515 / 0.419271 (-0.316757) 0.063054 / 0.043533 (0.019522) 0.491724 / 0.255139 (0.236585) 0.547498 / 0.283200 (0.264298) 0.039266 / 0.141683 (-0.102416) 1.801226 / 1.452155 (0.349071) 1.861778 / 1.492716 (0.369061)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.313009 / 0.018006 (0.295003) 0.587695 / 0.000490 (0.587205) 0.004972 / 0.000200 (0.004772) 0.000110 / 0.000054 (0.000055)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029230 / 0.037411 (-0.008181) 0.091154 / 0.014526 (0.076628) 0.110505 / 0.176557 (-0.066052) 0.164204 / 0.737135 (-0.572932) 0.107812 / 0.296338 (-0.188526)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.610535 / 0.215209 (0.395326) 6.162517 / 2.077655 (4.084862) 2.866718 / 1.504120 (1.362598) 2.542412 / 1.541195 (1.001218) 2.584136 / 1.468490 (1.115645) 0.874319 / 4.584777 (-3.710458) 5.257184 / 3.745712 (1.511472) 4.705840 / 5.269862 (-0.564022) 2.971708 / 4.565676 (-1.593969) 0.099026 / 0.424275 (-0.325249) 0.009142 / 0.007607 (0.001535) 0.728660 / 0.226044 (0.502615) 7.560922 / 2.268929 (5.291994) 3.439521 / 55.444624 (-52.005103) 2.854730 / 6.876477 (-4.021746) 3.088951 / 2.142072 (0.946879) 0.973621 / 4.805227 (-3.831606) 0.209792 / 6.500664 (-6.290872) 0.081107 / 0.075469 (0.005638)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.716809 / 1.841788 (-0.124978) 24.386927 / 8.074308 (16.312619) 20.715524 / 10.191392 (10.524131) 0.260831 / 0.680424 (-0.419592) 0.030701 / 0.534201 (-0.503500) 0.490018 / 0.579283 (-0.089265) 0.590424 / 0.434364 (0.156060) 0.589942 / 0.540337 (0.049604) 0.798094 / 1.386936 (-0.588842)

@github-actions
Copy link

github-actions bot commented Aug 8, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006592 / 0.011353 (-0.004761) 0.003880 / 0.011008 (-0.007128) 0.083761 / 0.038508 (0.045253) 0.075966 / 0.023109 (0.052857) 0.315291 / 0.275898 (0.039393) 0.355920 / 0.323480 (0.032440) 0.004972 / 0.007986 (-0.003014) 0.003053 / 0.004328 (-0.001275) 0.063553 / 0.004250 (0.059302) 0.050794 / 0.037052 (0.013742) 0.317681 / 0.258489 (0.059192) 0.361991 / 0.293841 (0.068150) 0.028119 / 0.128546 (-0.100427) 0.008203 / 0.075646 (-0.067443) 0.271756 / 0.419271 (-0.147516) 0.046701 / 0.043533 (0.003168) 0.316520 / 0.255139 (0.061381) 0.350499 / 0.283200 (0.067300) 0.022399 / 0.141683 (-0.119284) 1.416017 / 1.452155 (-0.036138) 1.503087 / 1.492716 (0.010371)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.208250 / 0.018006 (0.190244) 0.470345 / 0.000490 (0.469856) 0.003687 / 0.000200 (0.003487) 0.000073 / 0.000054 (0.000019)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.026163 / 0.037411 (-0.011248) 0.083315 / 0.014526 (0.068789) 0.088541 / 0.176557 (-0.088015) 0.150078 / 0.737135 (-0.587057) 0.088862 / 0.296338 (-0.207476)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.404911 / 0.215209 (0.189702) 4.059257 / 2.077655 (1.981602) 1.890987 / 1.504120 (0.386867) 1.726608 / 1.541195 (0.185413) 1.767479 / 1.468490 (0.298989) 0.518826 / 4.584777 (-4.065951) 3.212145 / 3.745712 (-0.533567) 3.029933 / 5.269862 (-2.239929) 2.000203 / 4.565676 (-2.565474) 0.059631 / 0.424275 (-0.364644) 0.006707 / 0.007607 (-0.000900) 0.485741 / 0.226044 (0.259697) 4.871938 / 2.268929 (2.603010) 2.418856 / 55.444624 (-53.025769) 2.084847 / 6.876477 (-4.791630) 2.207992 / 2.142072 (0.065920) 0.614354 / 4.805227 (-4.190873) 0.128932 / 6.500664 (-6.371732) 0.062342 / 0.075469 (-0.013127)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.325792 / 1.841788 (-0.515995) 19.718995 / 8.074308 (11.644687) 15.278535 / 10.191392 (5.087143) 0.146719 / 0.680424 (-0.533705) 0.017718 / 0.534201 (-0.516483) 0.335709 / 0.579283 (-0.243574) 0.378060 / 0.434364 (-0.056304) 0.391135 / 0.540337 (-0.149202) 0.548045 / 1.386936 (-0.838891)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006504 / 0.011353 (-0.004849) 0.003742 / 0.011008 (-0.007266) 0.064405 / 0.038508 (0.025897) 0.077618 / 0.023109 (0.054509) 0.365325 / 0.275898 (0.089427) 0.408109 / 0.323480 (0.084629) 0.004909 / 0.007986 (-0.003076) 0.002972 / 0.004328 (-0.001356) 0.063933 / 0.004250 (0.059682) 0.052916 / 0.037052 (0.015863) 0.370891 / 0.258489 (0.112402) 0.412134 / 0.293841 (0.118293) 0.028171 / 0.128546 (-0.100375) 0.008150 / 0.075646 (-0.067497) 0.069248 / 0.419271 (-0.350024) 0.042353 / 0.043533 (-0.001180) 0.368117 / 0.255139 (0.112978) 0.397548 / 0.283200 (0.114348) 0.022967 / 0.141683 (-0.118716) 1.472740 / 1.452155 (0.020586) 1.524028 / 1.492716 (0.031311)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.256854 / 0.018006 (0.238848) 0.471499 / 0.000490 (0.471009) 0.009609 / 0.000200 (0.009409) 0.000109 / 0.000054 (0.000054)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027978 / 0.037411 (-0.009433) 0.086741 / 0.014526 (0.072215) 0.091189 / 0.176557 (-0.085368) 0.146117 / 0.737135 (-0.591018) 0.092358 / 0.296338 (-0.203980)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.426356 / 0.215209 (0.211147) 4.263782 / 2.077655 (2.186127) 2.178198 / 1.504120 (0.674078) 2.015405 / 1.541195 (0.474211) 2.055966 / 1.468490 (0.587476) 0.507531 / 4.584777 (-4.077246) 3.175967 / 3.745712 (-0.569745) 3.055697 / 5.269862 (-2.214165) 1.987663 / 4.565676 (-2.578014) 0.058452 / 0.424275 (-0.365823) 0.006944 / 0.007607 (-0.000663) 0.502534 / 0.226044 (0.276489) 5.024693 / 2.268929 (2.755765) 2.754971 / 55.444624 (-52.689653) 2.470845 / 6.876477 (-4.405632) 2.698675 / 2.142072 (0.556602) 0.602357 / 4.805227 (-4.202871) 0.129490 / 6.500664 (-6.371174) 0.065127 / 0.075469 (-0.010342)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.398487 / 1.841788 (-0.443301) 19.692279 / 8.074308 (11.617971) 15.124064 / 10.191392 (4.932672) 0.148938 / 0.680424 (-0.531486) 0.017418 / 0.534201 (-0.516783) 0.340480 / 0.579283 (-0.238803) 0.377223 / 0.434364 (-0.057141) 0.405303 / 0.540337 (-0.135034) 0.548923 / 1.386936 (-0.838013)

@github-actions
Copy link

github-actions bot commented Aug 8, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006433 / 0.011353 (-0.004920) 0.004002 / 0.011008 (-0.007006) 0.084130 / 0.038508 (0.045622) 0.070628 / 0.023109 (0.047519) 0.312372 / 0.275898 (0.036474) 0.343993 / 0.323480 (0.020513) 0.003936 / 0.007986 (-0.004050) 0.003336 / 0.004328 (-0.000993) 0.064715 / 0.004250 (0.060465) 0.052511 / 0.037052 (0.015458) 0.314092 / 0.258489 (0.055603) 0.363152 / 0.293841 (0.069311) 0.030898 / 0.128546 (-0.097648) 0.008396 / 0.075646 (-0.067250) 0.288083 / 0.419271 (-0.131188) 0.051654 / 0.043533 (0.008122) 0.315252 / 0.255139 (0.060113) 0.346756 / 0.283200 (0.063556) 0.025167 / 0.141683 (-0.116515) 1.487265 / 1.452155 (0.035110) 1.557528 / 1.492716 (0.064812)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.206517 / 0.018006 (0.188510) 0.458359 / 0.000490 (0.457869) 0.003719 / 0.000200 (0.003519) 0.000070 / 0.000054 (0.000016)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.029631 / 0.037411 (-0.007780) 0.083856 / 0.014526 (0.069330) 0.340431 / 0.176557 (0.163875) 0.153864 / 0.737135 (-0.583271) 0.095951 / 0.296338 (-0.200388)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.379182 / 0.215209 (0.163973) 3.783396 / 2.077655 (1.705741) 1.835932 / 1.504120 (0.331813) 1.667563 / 1.541195 (0.126369) 1.739309 / 1.468490 (0.270818) 0.478957 / 4.584777 (-4.105820) 3.521974 / 3.745712 (-0.223738) 3.237635 / 5.269862 (-2.032227) 2.000300 / 4.565676 (-2.565377) 0.056389 / 0.424275 (-0.367887) 0.007242 / 0.007607 (-0.000365) 0.452642 / 0.226044 (0.226598) 4.524339 / 2.268929 (2.255411) 2.346210 / 55.444624 (-53.098414) 1.957196 / 6.876477 (-4.919281) 2.180051 / 2.142072 (0.037979) 0.570205 / 4.805227 (-4.235022) 0.131346 / 6.500664 (-6.369318) 0.059327 / 0.075469 (-0.016142)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.244709 / 1.841788 (-0.597079) 19.566277 / 8.074308 (11.491969) 14.172598 / 10.191392 (3.981206) 0.166493 / 0.680424 (-0.513931) 0.018281 / 0.534201 (-0.515920) 0.391608 / 0.579283 (-0.187675) 0.402642 / 0.434364 (-0.031722) 0.464974 / 0.540337 (-0.075364) 0.637565 / 1.386936 (-0.749371)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006929 / 0.011353 (-0.004424) 0.004114 / 0.011008 (-0.006894) 0.064589 / 0.038508 (0.026081) 0.083334 / 0.023109 (0.060225) 0.391280 / 0.275898 (0.115382) 0.426157 / 0.323480 (0.102678) 0.005336 / 0.007986 (-0.002650) 0.003395 / 0.004328 (-0.000934) 0.064560 / 0.004250 (0.060310) 0.057094 / 0.037052 (0.020042) 0.398959 / 0.258489 (0.140470) 0.432470 / 0.293841 (0.138629) 0.031412 / 0.128546 (-0.097134) 0.008670 / 0.075646 (-0.066976) 0.071249 / 0.419271 (-0.348022) 0.048934 / 0.043533 (0.005401) 0.384207 / 0.255139 (0.129068) 0.407992 / 0.283200 (0.124792) 0.024492 / 0.141683 (-0.117191) 1.467788 / 1.452155 (0.015634) 1.541011 / 1.492716 (0.048295)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.279607 / 0.018006 (0.261600) 0.448899 / 0.000490 (0.448410) 0.020990 / 0.000200 (0.020790) 0.000132 / 0.000054 (0.000078)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030313 / 0.037411 (-0.007099) 0.089209 / 0.014526 (0.074684) 0.101024 / 0.176557 (-0.075532) 0.153468 / 0.737135 (-0.583667) 0.103219 / 0.296338 (-0.193120)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.429176 / 0.215209 (0.213967) 4.302234 / 2.077655 (2.224580) 2.291103 / 1.504120 (0.786983) 2.126257 / 1.541195 (0.585062) 2.207090 / 1.468490 (0.738600) 0.484643 / 4.584777 (-4.100134) 3.557429 / 3.745712 (-0.188283) 3.253804 / 5.269862 (-2.016058) 2.026087 / 4.565676 (-2.539589) 0.057793 / 0.424275 (-0.366482) 0.007761 / 0.007607 (0.000154) 0.504819 / 0.226044 (0.278775) 5.046868 / 2.268929 (2.777940) 2.773149 / 55.444624 (-52.671475) 2.398036 / 6.876477 (-4.478440) 2.608094 / 2.142072 (0.466021) 0.630499 / 4.805227 (-4.174729) 0.135496 / 6.500664 (-6.365168) 0.061329 / 0.075469 (-0.014140)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.327124 / 1.841788 (-0.514664) 19.889796 / 8.074308 (11.815488) 14.196100 / 10.191392 (4.004708) 0.161963 / 0.680424 (-0.518461) 0.018529 / 0.534201 (-0.515672) 0.392325 / 0.579283 (-0.186958) 0.404836 / 0.434364 (-0.029528) 0.475898 / 0.540337 (-0.064439) 0.633563 / 1.386936 (-0.753373)

@albertvillanova albertvillanova marked this pull request as ready for review August 8, 2023 13:47
@albertvillanova albertvillanova changed the title Fix authentication when passing token Fix authentication issues Aug 8, 2023
@albertvillanova albertvillanova merged commit 12cfc11 into main Aug 8, 2023
@albertvillanova albertvillanova deleted the fix-6126 branch August 8, 2023 15:16
@github-actions
Copy link

github-actions bot commented Aug 8, 2023

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006390 / 0.011353 (-0.004963) 0.003683 / 0.011008 (-0.007325) 0.081274 / 0.038508 (0.042766) 0.062193 / 0.023109 (0.039083) 0.355360 / 0.275898 (0.079462) 0.396471 / 0.323480 (0.072992) 0.003569 / 0.007986 (-0.004416) 0.003928 / 0.004328 (-0.000400) 0.062292 / 0.004250 (0.058041) 0.049700 / 0.037052 (0.012648) 0.354604 / 0.258489 (0.096115) 0.419436 / 0.293841 (0.125595) 0.027151 / 0.128546 (-0.101395) 0.007954 / 0.075646 (-0.067692) 0.262231 / 0.419271 (-0.157041) 0.045483 / 0.043533 (0.001950) 0.354285 / 0.255139 (0.099146) 0.385178 / 0.283200 (0.101978) 0.021183 / 0.141683 (-0.120500) 1.420785 / 1.452155 (-0.031370) 1.531545 / 1.492716 (0.038829)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.202298 / 0.018006 (0.184292) 0.442172 / 0.000490 (0.441683) 0.003565 / 0.000200 (0.003366) 0.000074 / 0.000054 (0.000020)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.024229 / 0.037411 (-0.013183) 0.074352 / 0.014526 (0.059826) 0.087530 / 0.176557 (-0.089026) 0.146478 / 0.737135 (-0.590658) 0.085145 / 0.296338 (-0.211194)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.388395 / 0.215209 (0.173186) 3.877623 / 2.077655 (1.799968) 1.882444 / 1.504120 (0.378324) 1.707871 / 1.541195 (0.166676) 1.772132 / 1.468490 (0.303642) 0.491937 / 4.584777 (-4.092840) 3.057947 / 3.745712 (-0.687765) 2.822390 / 5.269862 (-2.447471) 1.879719 / 4.565676 (-2.685957) 0.056830 / 0.424275 (-0.367445) 0.006415 / 0.007607 (-0.001192) 0.458945 / 0.226044 (0.232900) 4.594502 / 2.268929 (2.325574) 2.339677 / 55.444624 (-53.104948) 1.983750 / 6.876477 (-4.892727) 2.173792 / 2.142072 (0.031719) 0.580390 / 4.805227 (-4.224838) 0.124568 / 6.500664 (-6.376096) 0.061694 / 0.075469 (-0.013775)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.265108 / 1.841788 (-0.576680) 18.415254 / 8.074308 (10.340946) 13.963829 / 10.191392 (3.772437) 0.148926 / 0.680424 (-0.531498) 0.016919 / 0.534201 (-0.517282) 0.331082 / 0.579283 (-0.248201) 0.345777 / 0.434364 (-0.088587) 0.381123 / 0.540337 (-0.159214) 0.543297 / 1.386936 (-0.843639)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006121 / 0.011353 (-0.005232) 0.003717 / 0.011008 (-0.007291) 0.063653 / 0.038508 (0.025144) 0.063723 / 0.023109 (0.040613) 0.360233 / 0.275898 (0.084335) 0.398353 / 0.323480 (0.074873) 0.004696 / 0.007986 (-0.003290) 0.002876 / 0.004328 (-0.001452) 0.063057 / 0.004250 (0.058806) 0.050258 / 0.037052 (0.013206) 0.362946 / 0.258489 (0.104457) 0.403260 / 0.293841 (0.109419) 0.027738 / 0.128546 (-0.100809) 0.008025 / 0.075646 (-0.067621) 0.068781 / 0.419271 (-0.350491) 0.042114 / 0.043533 (-0.001419) 0.363546 / 0.255139 (0.108407) 0.385640 / 0.283200 (0.102440) 0.021757 / 0.141683 (-0.119926) 1.482364 / 1.452155 (0.030209) 1.571859 / 1.492716 (0.079143)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.235628 / 0.018006 (0.217622) 0.439909 / 0.000490 (0.439419) 0.003070 / 0.000200 (0.002870) 0.000075 / 0.000054 (0.000020)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.027045 / 0.037411 (-0.010366) 0.080413 / 0.014526 (0.065887) 0.088953 / 0.176557 (-0.087603) 0.141907 / 0.737135 (-0.595228) 0.090604 / 0.296338 (-0.205735)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.423250 / 0.215209 (0.208041) 4.216510 / 2.077655 (2.138855) 2.162946 / 1.504120 (0.658826) 2.014561 / 1.541195 (0.473366) 2.086347 / 1.468490 (0.617857) 0.496591 / 4.584777 (-4.088186) 3.089594 / 3.745712 (-0.656118) 2.853640 / 5.269862 (-2.416221) 1.878149 / 4.565676 (-2.687527) 0.056914 / 0.424275 (-0.367361) 0.006762 / 0.007607 (-0.000845) 0.493470 / 0.226044 (0.267426) 4.929966 / 2.268929 (2.661037) 2.640885 / 55.444624 (-52.803739) 2.335950 / 6.876477 (-4.540527) 2.565866 / 2.142072 (0.423793) 0.585433 / 4.805227 (-4.219794) 0.124969 / 6.500664 (-6.375695) 0.062361 / 0.075469 (-0.013108)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.369144 / 1.841788 (-0.472644) 19.037582 / 8.074308 (10.963274) 14.069141 / 10.191392 (3.877749) 0.146469 / 0.680424 (-0.533954) 0.016911 / 0.534201 (-0.517290) 0.336802 / 0.579283 (-0.242482) 0.336411 / 0.434364 (-0.097953) 0.392360 / 0.540337 (-0.147977) 0.536078 / 1.386936 (-0.850858)

albertvillanova added a commit that referenced this pull request Aug 8, 2023
* Fix hf_token fixture

* Do not store token but pass it explicitly

* Fix test with no token

* Fix style

* Test private load_dataset_builder and get_dataset_config_info

* Fix DownloadConfig to pass token to storage_options

* Set config HUB_DATASETS_HFFS_URL

* Use HUB_DATASETS_HFFS_URL in Audio/Image decode_example

* Pass download_config create_builder_configs_from_metadata_configs
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

Private datasets do not load when passing token

3 participants