Skip to content

Conversation

@lhoestq
Copy link
Member

@lhoestq lhoestq commented Jul 17, 2023

No description provided.

@lhoestq lhoestq changed the title Remove unused dataset infos dict Remove unused DatasetInfosDict in push_to_hub Jul 17, 2023
@lhoestq lhoestq changed the title Remove unused DatasetInfosDict in push_to_hub Fix unused DatasetInfosDict code in push_to_hub Jul 17, 2023
@HuggingFaceDocBuilderDev
Copy link

HuggingFaceDocBuilderDev commented Jul 17, 2023

The documentation is not available anymore as the PR was closed or merged.

@lhoestq lhoestq marked this pull request as ready for review July 17, 2023 11:12
@lhoestq lhoestq requested a review from polinaeterna July 18, 2023 15:04
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008634 / 0.011353 (-0.002719) 0.005147 / 0.011008 (-0.005861) 0.102865 / 0.038508 (0.064357) 0.080245 / 0.023109 (0.057136) 0.401288 / 0.275898 (0.125390) 0.419708 / 0.323480 (0.096228) 0.006342 / 0.007986 (-0.001644) 0.003998 / 0.004328 (-0.000330) 0.078880 / 0.004250 (0.074630) 0.068199 / 0.037052 (0.031147) 0.389573 / 0.258489 (0.131084) 0.417292 / 0.293841 (0.123451) 0.048856 / 0.128546 (-0.079691) 0.014165 / 0.075646 (-0.061481) 0.348063 / 0.419271 (-0.071209) 0.067547 / 0.043533 (0.024014) 0.402251 / 0.255139 (0.147112) 0.419478 / 0.283200 (0.136278) 0.034846 / 0.141683 (-0.106837) 1.773493 / 1.452155 (0.321338) 1.930546 / 1.492716 (0.437830)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.211835 / 0.018006 (0.193829) 0.545311 / 0.000490 (0.544821) 0.006766 / 0.000200 (0.006566) 0.000104 / 0.000054 (0.000050)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.035406 / 0.037411 (-0.002006) 0.100769 / 0.014526 (0.086243) 0.108667 / 0.176557 (-0.067890) 0.193099 / 0.737135 (-0.544036) 0.113539 / 0.296338 (-0.182799)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.586935 / 0.215209 (0.371726) 5.895245 / 2.077655 (3.817591) 2.528375 / 1.504120 (1.024255) 2.228617 / 1.541195 (0.687423) 2.295799 / 1.468490 (0.827309) 0.859272 / 4.584777 (-3.725505) 5.033434 / 3.745712 (1.287722) 7.546587 / 5.269862 (2.276726) 4.457137 / 4.565676 (-0.108539) 0.099626 / 0.424275 (-0.324649) 0.009296 / 0.007607 (0.001689) 0.713498 / 0.226044 (0.487454) 7.409385 / 2.268929 (5.140456) 3.361418 / 55.444624 (-52.083206) 2.681111 / 6.876477 (-4.195366) 2.849598 / 2.142072 (0.707526) 1.114863 / 4.805227 (-3.690364) 0.215494 / 6.500664 (-6.285170) 0.075807 / 0.075469 (0.000338)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.606458 / 1.841788 (-0.235330) 23.751096 / 8.074308 (15.676788) 21.279110 / 10.191392 (11.087718) 0.220785 / 0.680424 (-0.459639) 0.032688 / 0.534201 (-0.501513) 0.530948 / 0.579283 (-0.048335) 0.630056 / 0.434364 (0.195693) 0.572743 / 0.540337 (0.032405) 0.771853 / 1.386936 (-0.615083)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.008693 / 0.011353 (-0.002660) 0.004750 / 0.011008 (-0.006259) 0.079764 / 0.038508 (0.041256) 0.082096 / 0.023109 (0.058987) 0.467198 / 0.275898 (0.191300) 0.532361 / 0.323480 (0.208881) 0.005836 / 0.007986 (-0.002149) 0.004333 / 0.004328 (0.000005) 0.080444 / 0.004250 (0.076194) 0.065883 / 0.037052 (0.028831) 0.464871 / 0.258489 (0.206382) 0.575026 / 0.293841 (0.281185) 0.057807 / 0.128546 (-0.070739) 0.017462 / 0.075646 (-0.058185) 0.093667 / 0.419271 (-0.325605) 0.071466 / 0.043533 (0.027933) 0.495846 / 0.255139 (0.240707) 0.526100 / 0.283200 (0.242900) 0.034852 / 0.141683 (-0.106831) 1.884152 / 1.452155 (0.431998) 1.922681 / 1.492716 (0.429965)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.250969 / 0.018006 (0.232963) 0.504979 / 0.000490 (0.504489) 0.000466 / 0.000200 (0.000266) 0.000083 / 0.000054 (0.000028)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.032411 / 0.037411 (-0.005000) 0.093184 / 0.014526 (0.078658) 0.110798 / 0.176557 (-0.065759) 0.165741 / 0.737135 (-0.571394) 0.111022 / 0.296338 (-0.185317)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.661284 / 0.215209 (0.446075) 6.622388 / 2.077655 (4.544733) 3.095705 / 1.504120 (1.591585) 2.745698 / 1.541195 (1.204503) 2.694103 / 1.468490 (1.225612) 0.862154 / 4.584777 (-3.722623) 5.109985 / 3.745712 (1.364273) 5.040362 / 5.269862 (-0.229499) 3.072837 / 4.565676 (-1.492840) 0.110421 / 0.424275 (-0.313854) 0.008476 / 0.007607 (0.000869) 0.910020 / 0.226044 (0.683975) 8.123626 / 2.268929 (5.854698) 3.813811 / 55.444624 (-51.630813) 3.017244 / 6.876477 (-3.859232) 3.061222 / 2.142072 (0.919150) 1.073548 / 4.805227 (-3.731680) 0.216327 / 6.500664 (-6.284338) 0.072977 / 0.075469 (-0.002492)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.722482 / 1.841788 (-0.119305) 23.706716 / 8.074308 (15.632407) 23.192134 / 10.191392 (13.000742) 0.276733 / 0.680424 (-0.403691) 0.033538 / 0.534201 (-0.500663) 0.602083 / 0.579283 (0.022799) 0.578718 / 0.434364 (0.144354) 0.558311 / 0.540337 (0.017974) 0.740341 / 1.386936 (-0.646595)

)
dataset_card = DatasetCard.load(Path(dataset_readme_path))
dataset_card_data = dataset_card.data
dataset_infos: DatasetInfosDict = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it's not used so I removed this line

Comment on lines +1714 to +1720
download_config = DownloadConfig()
download_config.download_desc = "Downloading metadata"
download_config.token = token
dataset_infos_path = cached_path(
hf_hub_url(repo_id, config.DATASETDICT_INFOS_FILENAME),
download_config=download_config,
)
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this code needs to be here, because in the previous location it would be run only if there is no README.md and if there is a json file. But it needs to run if there is a json file, no matter if there is a README.md or not

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah lol true good catch!

Copy link
Contributor

@polinaeterna polinaeterna left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thank you ❤️

@lhoestq lhoestq merged commit 4472a87 into main Jul 18, 2023
@lhoestq lhoestq deleted the remove-unused-DatasetInfosDict branch July 18, 2023 16:08
@github-actions
Copy link

Show benchmarks

PyArrow==8.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006862 / 0.011353 (-0.004491) 0.004223 / 0.011008 (-0.006786) 0.085931 / 0.038508 (0.047423) 0.081437 / 0.023109 (0.058328) 0.349542 / 0.275898 (0.073644) 0.379881 / 0.323480 (0.056401) 0.005651 / 0.007986 (-0.002334) 0.003662 / 0.004328 (-0.000666) 0.065251 / 0.004250 (0.061001) 0.061599 / 0.037052 (0.024547) 0.359681 / 0.258489 (0.101192) 0.392502 / 0.293841 (0.098661) 0.031300 / 0.128546 (-0.097246) 0.008591 / 0.075646 (-0.067055) 0.288577 / 0.419271 (-0.130694) 0.062920 / 0.043533 (0.019388) 0.348989 / 0.255139 (0.093850) 0.362769 / 0.283200 (0.079569) 0.030087 / 0.141683 (-0.111596) 1.480748 / 1.452155 (0.028594) 1.580413 / 1.492716 (0.087697)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.205804 / 0.018006 (0.187798) 0.455386 / 0.000490 (0.454897) 0.003134 / 0.000200 (0.002934) 0.000077 / 0.000054 (0.000023)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.030252 / 0.037411 (-0.007159) 0.087566 / 0.014526 (0.073041) 0.098209 / 0.176557 (-0.078347) 0.155816 / 0.737135 (-0.581319) 0.098938 / 0.296338 (-0.197401)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.386688 / 0.215209 (0.171479) 3.852777 / 2.077655 (1.775123) 1.938688 / 1.504120 (0.434568) 1.779234 / 1.541195 (0.238039) 1.864262 / 1.468490 (0.395772) 0.482472 / 4.584777 (-4.102305) 3.658060 / 3.745712 (-0.087652) 5.206489 / 5.269862 (-0.063373) 3.262498 / 4.565676 (-1.303179) 0.057523 / 0.424275 (-0.366752) 0.007365 / 0.007607 (-0.000242) 0.466886 / 0.226044 (0.240841) 4.671026 / 2.268929 (2.402097) 2.380357 / 55.444624 (-53.064268) 2.096590 / 6.876477 (-4.779887) 2.274415 / 2.142072 (0.132342) 0.579705 / 4.805227 (-4.225522) 0.134522 / 6.500664 (-6.366142) 0.062232 / 0.075469 (-0.013237)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.245965 / 1.841788 (-0.595823) 20.115180 / 8.074308 (12.040872) 14.602983 / 10.191392 (4.411591) 0.146890 / 0.680424 (-0.533533) 0.018424 / 0.534201 (-0.515777) 0.393941 / 0.579283 (-0.185342) 0.413785 / 0.434364 (-0.020579) 0.453344 / 0.540337 (-0.086993) 0.655446 / 1.386936 (-0.731490)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.006807 / 0.011353 (-0.004546) 0.004083 / 0.011008 (-0.006925) 0.065389 / 0.038508 (0.026881) 0.081056 / 0.023109 (0.057947) 0.362823 / 0.275898 (0.086925) 0.401928 / 0.323480 (0.078448) 0.005452 / 0.007986 (-0.002533) 0.003413 / 0.004328 (-0.000915) 0.065238 / 0.004250 (0.060987) 0.057264 / 0.037052 (0.020211) 0.375713 / 0.258489 (0.117224) 0.407858 / 0.293841 (0.114017) 0.031580 / 0.128546 (-0.096966) 0.008643 / 0.075646 (-0.067003) 0.071693 / 0.419271 (-0.347578) 0.049392 / 0.043533 (0.005859) 0.370194 / 0.255139 (0.115055) 0.384647 / 0.283200 (0.101447) 0.024805 / 0.141683 (-0.116877) 1.509511 / 1.452155 (0.057356) 1.560193 / 1.492716 (0.067477)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.234442 / 0.018006 (0.216436) 0.458818 / 0.000490 (0.458329) 0.000407 / 0.000200 (0.000207) 0.000060 / 0.000054 (0.000006)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.031661 / 0.037411 (-0.005750) 0.093143 / 0.014526 (0.078618) 0.102205 / 0.176557 (-0.074352) 0.155850 / 0.737135 (-0.581286) 0.104345 / 0.296338 (-0.191994)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.419641 / 0.215209 (0.204432) 4.200808 / 2.077655 (2.123153) 2.218227 / 1.504120 (0.714107) 2.052604 / 1.541195 (0.511409) 2.150611 / 1.468490 (0.682121) 0.482665 / 4.584777 (-4.102112) 3.606541 / 3.745712 (-0.139172) 3.310637 / 5.269862 (-1.959224) 2.070200 / 4.565676 (-2.495476) 0.056586 / 0.424275 (-0.367689) 0.007826 / 0.007607 (0.000218) 0.491037 / 0.226044 (0.264992) 4.901538 / 2.268929 (2.632610) 2.676402 / 55.444624 (-52.768223) 2.363935 / 6.876477 (-4.512542) 2.587813 / 2.142072 (0.445741) 0.579302 / 4.805227 (-4.225926) 0.132792 / 6.500664 (-6.367873) 0.061865 / 0.075469 (-0.013604)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.354315 / 1.841788 (-0.487473) 20.874516 / 8.074308 (12.800208) 14.863559 / 10.191392 (4.672167) 0.183635 / 0.680424 (-0.496789) 0.018636 / 0.534201 (-0.515565) 0.395317 / 0.579283 (-0.183966) 0.410598 / 0.434364 (-0.023766) 0.476485 / 0.540337 (-0.063853) 0.643246 / 1.386936 (-0.743690)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants