|
21 | 21 | import pyarrow as pa |
22 | 22 |
|
23 | 23 | from .. import config |
24 | | -from ..utils.py_utils import map_nested |
25 | 24 | from .formatting import TensorFormatter |
26 | 25 |
|
27 | 26 |
|
28 | 27 | if TYPE_CHECKING: |
29 | 28 | import torch |
30 | 29 |
|
| 30 | +# Import torch once at module level once |
| 31 | +try: |
| 32 | + import torch |
| 33 | + |
| 34 | + _torch_available = True |
| 35 | +except ImportError: |
| 36 | + _torch_available = False |
| 37 | + torch = None |
| 38 | + |
31 | 39 |
|
32 | 40 | class TorchFormatter(TensorFormatter[Mapping, "torch.Tensor", Mapping]): |
33 | 41 | def __init__(self, features=None, token_per_repo_id=None, **torch_tensor_kwargs): |
34 | 42 | super().__init__(features=features, token_per_repo_id=token_per_repo_id) |
35 | 43 | self.torch_tensor_kwargs = torch_tensor_kwargs |
36 | | - import torch # noqa import torch at initialization |
| 44 | + |
| 45 | + if not _torch_available: |
| 46 | + raise ImportError("PyTorch is required but not available") |
37 | 47 |
|
38 | 48 | def _consolidate(self, column): |
39 | | - import torch |
40 | | - |
41 | | - if isinstance(column, list) and column: |
42 | | - if all( |
43 | | - isinstance(x, torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype |
44 | | - for x in column |
45 | | - ): |
46 | | - return torch.stack(column) |
| 49 | + """Smarter consolidation that only stacks when safe and beneficial.""" |
| 50 | + if not isinstance(column, list) or not column: |
| 51 | + return column |
| 52 | + |
| 53 | + # Check if all items are tensors with matching properties |
| 54 | + first = column[0] |
| 55 | + if not isinstance(first, torch.Tensor): |
| 56 | + return column |
| 57 | + |
| 58 | + # Fast check: if all tensors have same shape, dtype, and device, we can stack |
| 59 | + if all( |
| 60 | + isinstance(x, torch.Tensor) |
| 61 | + and x.shape == first.shape |
| 62 | + and x.dtype == first.dtype |
| 63 | + and x.device == first.device |
| 64 | + for x in column |
| 65 | + ): |
| 66 | + return torch.stack(column) |
| 67 | + |
47 | 68 | return column |
48 | 69 |
|
49 | 70 | def _tensorize(self, value): |
50 | | - import torch |
51 | | - |
| 71 | + """Zero/low-copy tensor conversion with smart dtype handling.""" |
| 72 | + # Fast path for strings, bytes, None |
52 | 73 | if isinstance(value, (str, bytes, type(None))): |
53 | 74 | return value |
54 | | - elif isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): |
55 | | - return value.tolist() |
56 | | - |
57 | | - default_dtype = {} |
58 | 75 |
|
59 | | - if isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.integer): |
60 | | - default_dtype = {"dtype": torch.int64} |
61 | | - |
62 | | - # Convert dtype to np.int64 if it's either np.uint16 or np.uint32 to ensure compatibility. |
63 | | - # np.uint64 is excluded from this conversion as there is no compatible PyTorch dtype that can handle it without loss. |
64 | | - if value.dtype in [np.uint16, np.uint32]: |
65 | | - value = value.astype(np.int64) |
66 | | - |
67 | | - elif isinstance(value, (np.number, np.ndarray)) and np.issubdtype(value.dtype, np.floating): |
68 | | - default_dtype = {"dtype": torch.float32} |
| 76 | + # Handle string arrays |
| 77 | + if isinstance(value, (np.character, np.ndarray)) and np.issubdtype(value.dtype, np.character): |
| 78 | + return value.tolist() |
69 | 79 |
|
| 80 | + # PIL Image fast path - avoid extra copies |
70 | 81 | if config.PIL_AVAILABLE and "PIL" in sys.modules: |
71 | 82 | import PIL.Image |
72 | 83 |
|
73 | 84 | if isinstance(value, PIL.Image.Image): |
74 | | - value = np.asarray(value) |
75 | | - if value.ndim == 2: |
76 | | - value = value[:, :, np.newaxis] |
| 85 | + # Single conversion path: PIL -> numpy -> torch |
| 86 | + arr = np.asarray(value) |
| 87 | + if arr.ndim == 2: |
| 88 | + arr = arr[:, :, np.newaxis] |
| 89 | + # Use moveaxis instead of transpose |
| 90 | + arr = np.moveaxis(arr, -1, 0) # HWC -> CHW |
| 91 | + # Ensure contiguous for zero-copy conversion |
| 92 | + if not arr.flags.c_contiguous: |
| 93 | + arr = np.ascontiguousarray(arr) |
| 94 | + # Ensure array is writable for torch conversion |
| 95 | + if not arr.flags.writeable: |
| 96 | + arr = arr.copy() |
| 97 | + return torch.from_numpy(arr) |
77 | 98 |
|
78 | | - value = value.transpose((2, 0, 1)) |
| 99 | + # Video/Audio decoder passthrough |
79 | 100 | if config.TORCHVISION_AVAILABLE and "torchvision" in sys.modules: |
80 | 101 | from torchvision.io import VideoReader |
81 | 102 |
|
82 | 103 | if isinstance(value, VideoReader): |
83 | | - return value # TODO(QL): set output to torch tensors ? |
| 104 | + return value |
| 105 | + |
84 | 106 | if config.TORCHCODEC_AVAILABLE and "torchcodec" in sys.modules: |
85 | 107 | from torchcodec.decoders import AudioDecoder, VideoDecoder |
86 | 108 |
|
87 | 109 | if isinstance(value, (VideoDecoder, AudioDecoder)): |
88 | | - return value # TODO(QL): set output to jax arrays ? |
| 110 | + return value |
| 111 | + |
| 112 | + # Support for other tensor libraries via __array__ |
| 113 | + if hasattr(value, "__array__") and not isinstance(value, torch.Tensor): |
| 114 | + value = value.__array__() |
| 115 | + |
| 116 | + # Fast numpy conversion paths |
| 117 | + if isinstance(value, np.ndarray): |
| 118 | + # Handle integer types with smart casting |
| 119 | + if np.issubdtype(value.dtype, np.integer): |
| 120 | + # Check if user specified a dtype, otherwise default to int64 |
| 121 | + kwargs = self.torch_tensor_kwargs.copy() |
| 122 | + target_dtype = kwargs.get("dtype", torch.int64) |
| 123 | + |
| 124 | + # Safe casting for unsigned types |
| 125 | + if value.dtype in (np.uint16, np.uint32): |
| 126 | + # Cast to int64 in numpy (fast) then convert to torch |
| 127 | + value = value.astype(np.int64) |
| 128 | + if target_dtype == torch.int64: |
| 129 | + if not value.flags.writeable: |
| 130 | + value = value.copy() |
| 131 | + return torch.from_numpy(value) |
| 132 | + else: |
| 133 | + if not value.flags.writeable: |
| 134 | + value = value.copy() |
| 135 | + kwargs.setdefault("dtype", target_dtype) |
| 136 | + return torch.as_tensor(value, **kwargs) |
| 137 | + elif value.dtype == np.uint64: |
| 138 | + # Check if values fit in int64 range |
| 139 | + if np.all(value <= np.iinfo(np.int64).max): |
| 140 | + value = value.astype(np.int64) |
| 141 | + if target_dtype == torch.int64: |
| 142 | + if not value.flags.writeable: |
| 143 | + value = value.copy() |
| 144 | + return torch.from_numpy(value) |
| 145 | + else: |
| 146 | + if not value.flags.writeable: |
| 147 | + value = value.copy() |
| 148 | + kwargs.setdefault("dtype", target_dtype) |
| 149 | + return torch.as_tensor(value, **kwargs) |
| 150 | + else: |
| 151 | + # Fallback to safe conversion via Python ints |
| 152 | + kwargs.setdefault("dtype", target_dtype) |
| 153 | + return torch.tensor(value, **kwargs) |
| 154 | + else: |
| 155 | + # Use zero-copy conversion for compatible integer types |
| 156 | + if value.dtype == np.int64 and target_dtype == torch.int64: |
| 157 | + # Perfect match, zero-copy conversion |
| 158 | + if not value.flags.writeable: |
| 159 | + value = value.copy() |
| 160 | + return torch.from_numpy(value) |
| 161 | + else: |
| 162 | + # Need dtype conversion, use as_tensor for efficiency |
| 163 | + if not value.flags.writeable: |
| 164 | + value = value.copy() |
| 165 | + kwargs.setdefault("dtype", target_dtype) |
| 166 | + return torch.as_tensor(value, **kwargs) |
| 167 | + |
| 168 | + # Handle floating point types |
| 169 | + elif np.issubdtype(value.dtype, np.floating): |
| 170 | + # Check if user specified a dtype, otherwise default to float32 |
| 171 | + kwargs = self.torch_tensor_kwargs.copy() |
| 172 | + target_dtype = kwargs.get("dtype", torch.float32) |
| 173 | + |
| 174 | + if value.dtype == np.float32 and target_dtype == torch.float32: |
| 175 | + # Zero-copy conversion, but ensure array is writable |
| 176 | + if not value.flags.writeable: |
| 177 | + value = value.copy() |
| 178 | + return torch.from_numpy(value) |
| 179 | + else: |
| 180 | + # Need dtype conversion |
| 181 | + if not value.flags.writeable: |
| 182 | + value = value.copy() |
| 183 | + kwargs.setdefault("dtype", target_dtype) |
| 184 | + return torch.as_tensor(value, **kwargs) |
| 185 | + else: |
| 186 | + # Other numpy types, use zero-copy when possible |
| 187 | + if not value.flags.writeable: |
| 188 | + value = value.copy() |
| 189 | + return torch.from_numpy(value) |
| 190 | + |
| 191 | + # Handle numpy scalars |
| 192 | + elif isinstance(value, np.number): |
| 193 | + kwargs = self.torch_tensor_kwargs.copy() |
| 194 | + if np.issubdtype(value.dtype, np.integer): |
| 195 | + # Use torch.as_tensor for scalar conversion with dtype control |
| 196 | + kwargs.setdefault("dtype", torch.int64) |
| 197 | + return torch.as_tensor(value, **kwargs) |
| 198 | + elif np.issubdtype(value.dtype, np.floating): |
| 199 | + kwargs.setdefault("dtype", torch.float32) |
| 200 | + return torch.as_tensor(value, **kwargs) |
| 201 | + else: |
| 202 | + return torch.as_tensor(value, **kwargs) |
| 203 | + |
| 204 | + # Handle Python lists/tuples of numbers efficiently |
| 205 | + elif isinstance(value, (list, tuple)): |
| 206 | + # Try to convert to numpy first for faster tensor creation |
| 207 | + try: |
| 208 | + arr = np.array(value) |
| 209 | + if arr.dtype.kind in "iuf": # integer, unsigned, float |
| 210 | + return self._tensorize(arr) # Recursive call to handle numpy path |
| 211 | + except (ValueError, TypeError): |
| 212 | + pass # Fall back to torch.tensor |
| 213 | + |
| 214 | + # Default fallback with dtype defaults |
| 215 | + default_dtype = {} |
| 216 | + if isinstance(value, (int, float)): |
| 217 | + if isinstance(value, int): |
| 218 | + default_dtype = {"dtype": torch.int64} |
| 219 | + else: |
| 220 | + default_dtype = {"dtype": torch.float32} |
89 | 221 |
|
90 | 222 | return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) |
91 | 223 |
|
92 | 224 | def _recursive_tensorize(self, data_struct): |
93 | | - import torch |
94 | | - |
95 | | - # support for torch, tf, jax etc. |
| 225 | + """Optimized recursive walker with reduced Python overhead.""" |
| 226 | + # Handle tensor-like objects with __array__ interface |
96 | 227 | if hasattr(data_struct, "__array__") and not isinstance(data_struct, torch.Tensor): |
97 | 228 | data_struct = data_struct.__array__() |
98 | | - # support for nested types like struct of list of struct |
| 229 | + |
| 230 | + # Handle object arrays (nested structures) |
99 | 231 | if isinstance(data_struct, np.ndarray): |
100 | | - if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects |
101 | | - return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) |
| 232 | + if data_struct.dtype == object: |
| 233 | + # Use list comprehension instead of map_nested |
| 234 | + result = [self._recursive_tensorize(item) for item in data_struct] |
| 235 | + return self._consolidate(result) |
| 236 | + # Handle lists and tuples |
102 | 237 | elif isinstance(data_struct, (list, tuple)): |
103 | | - return self._consolidate([self.recursive_tensorize(substruct) for substruct in data_struct]) |
| 238 | + result = [self._recursive_tensorize(item) for item in data_struct] |
| 239 | + return self._consolidate(result) |
| 240 | + # Handle dictionaries |
| 241 | + elif isinstance(data_struct, dict): |
| 242 | + return {key: self._recursive_tensorize(value) for key, value in data_struct.items()} |
| 243 | + |
| 244 | + # Base case: tensorize the leaf value |
104 | 245 | return self._tensorize(data_struct) |
105 | 246 |
|
106 | 247 | def recursive_tensorize(self, data_struct: dict): |
107 | | - return map_nested(self._recursive_tensorize, data_struct, map_list=False) |
| 248 | + """Public interface maintaining compatibility.""" |
| 249 | + return self._recursive_tensorize(data_struct) |
108 | 250 |
|
109 | 251 | def format_row(self, pa_table: pa.Table) -> Mapping: |
110 | 252 | row = self.numpy_arrow_extractor().extract_row(pa_table) |
|
0 commit comments