|
| 1 | +# Copyright 2024 Bytedance Ltd. and/or its affiliates |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | + |
| 16 | +import os |
| 17 | +from typing import Any, Dict, List, Optional |
| 18 | + |
| 19 | +import numpy as np |
| 20 | +import pytest |
| 21 | +import torch |
| 22 | + |
| 23 | +from verl.protocol import DataProto, pad_dataproto_to_divisor, unpad_dataproto |
| 24 | + |
| 25 | + |
| 26 | +def _get_data_proto( |
| 27 | + tensors: Optional[Dict[str, List[Any]]] = None, |
| 28 | + non_tensors: Optional[Dict[str, List[Any]]] = None, |
| 29 | + meta_info: Optional[Dict[str, Any]] = None, |
| 30 | +) -> DataProto: |
| 31 | + if tensors is None and non_tensors is None: |
| 32 | + tensors = {"obs": [1, 2, 3, 4, 5, 6]} |
| 33 | + non_tensors = {"labels": ["a", "b", "c", "d", "e", "f"]} |
| 34 | + |
| 35 | + if tensors is not None: |
| 36 | + tensors = {k: torch.tensor(v) if not isinstance(v, torch.Tensor) else v for k, v in tensors.items()} |
| 37 | + |
| 38 | + if non_tensors is not None: |
| 39 | + non_tensors = { |
| 40 | + k: np.array(v, dtype=object) if not isinstance(v, np.ndarray) else v for k, v in non_tensors.items() |
| 41 | + } |
| 42 | + |
| 43 | + meta_info = meta_info or {"info": "test_info"} |
| 44 | + return DataProto.from_dict(tensors=tensors, non_tensors=non_tensors, meta_info=meta_info) |
| 45 | + |
| 46 | + |
| 47 | +def _assert_equal(data1: DataProto, data2: Optional[DataProto] = None): |
| 48 | + data2 = data2 or _get_data_proto() |
| 49 | + if data1.batch is not None: |
| 50 | + assert data1.batch.keys() == data2.batch.keys() |
| 51 | + for key in data1.batch.keys(): |
| 52 | + assert torch.all(data1.batch[key] == data2.batch[key]) |
| 53 | + else: |
| 54 | + assert data2.batch is None |
| 55 | + |
| 56 | + if data1.non_tensor_batch is not None: |
| 57 | + assert data1.non_tensor_batch.keys() == data2.non_tensor_batch.keys() |
| 58 | + for key in data1.non_tensor_batch.keys(): |
| 59 | + assert np.all(data1.non_tensor_batch[key] == data2.non_tensor_batch[key]) |
| 60 | + else: |
| 61 | + assert data2.non_tensor_batch is None |
| 62 | + |
| 63 | + assert data1.meta_info == data2.meta_info |
| 64 | + |
| 65 | + |
| 66 | +def test_tensor_dict_constructor(): |
| 67 | + obs = torch.randn(100, 10) |
| 68 | + act = torch.randn(100, 10, 3) |
| 69 | + data = DataProto.from_dict(tensors={"obs": obs, "act": act}) |
| 70 | + assert len(data) == 100 |
| 71 | + |
| 72 | + with pytest.raises(AssertionError): |
| 73 | + data = DataProto.from_dict(tensors={"obs": obs, "act": act}, num_batch_dims=2) |
| 74 | + |
| 75 | + with pytest.raises(AssertionError): |
| 76 | + data = DataProto.from_dict(tensors={"obs": obs, "act": act}, num_batch_dims=3) |
| 77 | + |
| 78 | + labels = np.array(["a", "b", "c"], dtype=object) |
| 79 | + data = DataProto.from_dict(non_tensors={"labels": labels}) |
| 80 | + assert len(data) == 3 |
| 81 | + |
| 82 | + |
| 83 | +def test_getitem(): |
| 84 | + data = _get_data_proto() |
| 85 | + assert data[0].batch["obs"] == torch.tensor(1) |
| 86 | + assert data[0].non_tensor_batch["labels"] == "a" |
| 87 | + _assert_equal(data[1:3], _get_data_proto({"obs": [2, 3]}, {"labels": ["b", "c"]})) |
| 88 | + _assert_equal(data[[0, 2]], _get_data_proto({"obs": [1, 3]}, {"labels": ["a", "c"]})) |
| 89 | + _assert_equal(data[torch.tensor([1])], _get_data_proto({"obs": [2]}, {"labels": ["b"]})) |
| 90 | + |
| 91 | + |
| 92 | +def test_select_pop(): |
| 93 | + obs = torch.randn(100, 10) |
| 94 | + act = torch.randn(100, 3) |
| 95 | + dataset = _get_data_proto(tensors={"obs": obs, "act": act}, meta_info={"p": 1, "q": 2}) |
| 96 | + selected_dataset = dataset.select(batch_keys=["obs"], meta_info_keys=["p"]) |
| 97 | + |
| 98 | + assert selected_dataset.batch.keys() == {"obs"} |
| 99 | + assert selected_dataset.meta_info.keys() == {"p"} |
| 100 | + assert dataset.batch.keys() == {"obs", "act"} |
| 101 | + assert dataset.meta_info.keys() == {"p", "q"} |
| 102 | + |
| 103 | + popped_dataset = dataset.pop(batch_keys=["obs"], meta_info_keys=["p"]) |
| 104 | + assert popped_dataset.batch.keys() == {"obs"} |
| 105 | + assert popped_dataset.meta_info.keys() == {"p"} |
| 106 | + assert dataset.batch.keys() == {"act"} |
| 107 | + assert dataset.meta_info.keys() == {"q"} |
| 108 | + |
| 109 | + |
| 110 | +def test_chunk_concat_split(): |
| 111 | + data = _get_data_proto() |
| 112 | + with pytest.raises(AssertionError): |
| 113 | + data.chunk(5) |
| 114 | + |
| 115 | + chunked_data = data.chunk(2) |
| 116 | + |
| 117 | + assert len(chunked_data) == 2 |
| 118 | + expected_data = _get_data_proto({"obs": [1, 2, 3]}, {"labels": ["a", "b", "c"]}) |
| 119 | + _assert_equal(chunked_data[0], expected_data) |
| 120 | + |
| 121 | + concat_data = DataProto.concat(chunked_data) |
| 122 | + _assert_equal(concat_data, data) |
| 123 | + |
| 124 | + splitted_data = data.split(2) |
| 125 | + assert len(splitted_data) == 3 |
| 126 | + expected_data = _get_data_proto({"obs": [1, 2]}, {"labels": ["a", "b"]}) |
| 127 | + _assert_equal(splitted_data[0], expected_data) |
| 128 | + |
| 129 | + |
| 130 | +def test_reorder(): |
| 131 | + data = _get_data_proto() |
| 132 | + data.reorder(torch.tensor([3, 4, 2, 0, 1, 5])) |
| 133 | + expected_data = _get_data_proto({"obs": [4, 5, 3, 1, 2, 6]}, {"labels": ["d", "e", "c", "a", "b", "f"]}) |
| 134 | + _assert_equal(data, expected_data) |
| 135 | + |
| 136 | + |
| 137 | +@pytest.mark.parametrize("interleave", [True, False]) |
| 138 | +def test_repeat(interleave: bool): |
| 139 | + data = _get_data_proto({"obs": [1, 2]}, {"labels": ["a", "b"]}) |
| 140 | + repeated_data = data.repeat(repeat_times=2, interleave=interleave) |
| 141 | + expected_tensors = {"obs": [1, 1, 2, 2] if interleave else [1, 2, 1, 2]} |
| 142 | + expected_non_tensors = {"labels": ["a", "a", "b", "b"] if interleave else ["a", "b", "a", "b"]} |
| 143 | + _assert_equal(repeated_data, _get_data_proto(expected_tensors, expected_non_tensors)) |
| 144 | + |
| 145 | + |
| 146 | +@pytest.mark.parametrize("size_divisor", [2, 3]) |
| 147 | +def test_dataproto_pad_unpad(size_divisor: int): |
| 148 | + data = _get_data_proto({"obs": [1, 2, 3]}, {"labels": ["a", "b", "c"]}) |
| 149 | + # test size_divisor=2 |
| 150 | + padded_data, pad_size = pad_dataproto_to_divisor(data, size_divisor=size_divisor) |
| 151 | + unpadded_data = unpad_dataproto(padded_data, pad_size=pad_size) |
| 152 | + |
| 153 | + if size_divisor == 2: |
| 154 | + assert pad_size == 1 |
| 155 | + expected_tensors = {"obs": [1, 2, 3, 1]} |
| 156 | + expected_non_tensors = {"labels": ["a", "b", "c", "a"]} |
| 157 | + expected_data = _get_data_proto(expected_tensors, expected_non_tensors) |
| 158 | + else: |
| 159 | + assert pad_size == 0 |
| 160 | + expected_data = data |
| 161 | + |
| 162 | + _assert_equal(padded_data, expected_data) |
| 163 | + _assert_equal(unpadded_data, data) |
| 164 | + |
| 165 | + |
| 166 | +def test_data_proto_save_load(): |
| 167 | + data = _get_data_proto() |
| 168 | + data.save_to_disk("test_data.pt") |
| 169 | + loaded_data = DataProto.load_from_disk("test_data.pt") |
| 170 | + os.remove("test_data.pt") |
| 171 | + _assert_equal(data, loaded_data) |
| 172 | + |
| 173 | + |
| 174 | +def test_union_tensor_dict(): |
| 175 | + obs = torch.randn(100, 10) |
| 176 | + data1 = _get_data_proto({"obs": obs, "act": torch.randn(100, 3)}) |
| 177 | + data2 = _get_data_proto({"obs": obs, "rew": torch.randn(100)}) |
| 178 | + data1.union(data2) |
| 179 | + |
| 180 | + data1 = _get_data_proto({"obs": obs, "act": torch.randn(100, 3)}) |
| 181 | + data2 = _get_data_proto({"obs": obs + 1, "rew": torch.randn(100)}) |
| 182 | + with pytest.raises(ValueError): |
| 183 | + data1.union(data2) |
0 commit comments