diff --git a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/Tables.java b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/Tables.java index d5688682a187..6f66bc9a263c 100644 --- a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/Tables.java +++ b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/Tables.java @@ -62,30 +62,34 @@ public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { + "ate_time\030\007 \001(\0132\032.google.protobuf.Timesta" + "mp\032n\n\035TargetColumnCorrelationsEntry\022\013\n\003k" + "ey\030\001 \001(\t\022<\n\005value\030\002 \001(\0132-.google.cloud.a" - + "utoml.v1beta1.CorrelationStats:\0028\001\"\211\003\n\023T" + + "utoml.v1beta1.CorrelationStats:\0028\001\"\226\004\n\023T" + "ablesModelMetadata\022C\n\022target_column_spec" + "\030\002 \001(\0132\'.google.cloud.automl.v1beta1.Col" + "umnSpec\022K\n\032input_feature_column_specs\030\003 " + "\003(\0132\'.google.cloud.automl.v1beta1.Column" - + "Spec\022\036\n\026optimization_objective\030\004 \001(\t\022T\n\030" - + "tables_model_column_info\030\005 \003(\01322.google." - + "cloud.automl.v1beta1.TablesModelColumnIn" - + "fo\022%\n\035train_budget_milli_node_hours\030\006 \001(" - + "\003\022#\n\033train_cost_milli_node_hours\030\007 \001(\003\022\036" - + "\n\026disable_early_stopping\030\014 \001(\010\"\345\001\n\020Table" - + "sAnnotation\022\r\n\005score\030\001 \001(\002\022E\n\023prediction" - + "_interval\030\004 \001(\0132(.google.cloud.automl.v1" - + "beta1.DoubleRange\022%\n\005value\030\002 \001(\0132\026.googl" - + "e.protobuf.Value\022T\n\030tables_model_column_" - + "info\030\003 \003(\01322.google.cloud.automl.v1beta1" - + ".TablesModelColumnInfo\"j\n\025TablesModelCol" - + "umnInfo\022\030\n\020column_spec_name\030\001 \001(\t\022\033\n\023col" - + "umn_display_name\030\002 \001(\t\022\032\n\022feature_import" - + "ance\030\003 \001(\002B\245\001\n\037com.google.cloud.automl.v" - + "1beta1P\001ZAgoogle.golang.org/genproto/goo" - + "gleapis/cloud/automl/v1beta1;automl\312\002\033Go" - + "ogle\\Cloud\\AutoMl\\V1beta1\352\002\036Google::Clou" - + "d::AutoML::V1beta1b\006proto3" + + "Spec\022\036\n\026optimization_objective\030\004 \001(\t\022-\n#" + + "optimization_objective_recall_value\030\021 \001(" + + "\002H\000\0220\n&optimization_objective_precision_" + + "value\030\022 \001(\002H\000\022T\n\030tables_model_column_inf" + + "o\030\005 \003(\01322.google.cloud.automl.v1beta1.Ta" + + "blesModelColumnInfo\022%\n\035train_budget_mill" + + "i_node_hours\030\006 \001(\003\022#\n\033train_cost_milli_n" + + "ode_hours\030\007 \001(\003\022\036\n\026disable_early_stoppin" + + "g\030\014 \001(\010B*\n(additional_optimization_objec" + + "tive_config\"\345\001\n\020TablesAnnotation\022\r\n\005scor" + + "e\030\001 \001(\002\022E\n\023prediction_interval\030\004 \001(\0132(.g" + + "oogle.cloud.automl.v1beta1.DoubleRange\022%" + + "\n\005value\030\002 \001(\0132\026.google.protobuf.Value\022T\n" + + "\030tables_model_column_info\030\003 \003(\01322.google" + + ".cloud.automl.v1beta1.TablesModelColumnI" + + "nfo\"j\n\025TablesModelColumnInfo\022\030\n\020column_s" + + "pec_name\030\001 \001(\t\022\033\n\023column_display_name\030\002 " + + "\001(\t\022\032\n\022feature_importance\030\003 \001(\002B\245\001\n\037com." + + "google.cloud.automl.v1beta1P\001ZAgoogle.go" + + "lang.org/genproto/googleapis/cloud/autom" + + "l/v1beta1;automl\312\002\033Google\\Cloud\\AutoMl\\V" + + "1beta1\352\002\036Google::Cloud::AutoML::V1beta1b" + + "\006proto3" }; com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner assigner = new com.google.protobuf.Descriptors.FileDescriptor.InternalDescriptorAssigner() { @@ -141,10 +145,13 @@ public com.google.protobuf.ExtensionRegistry assignDescriptors( "TargetColumnSpec", "InputFeatureColumnSpecs", "OptimizationObjective", + "OptimizationObjectiveRecallValue", + "OptimizationObjectivePrecisionValue", "TablesModelColumnInfo", "TrainBudgetMilliNodeHours", "TrainCostMilliNodeHours", "DisableEarlyStopping", + "AdditionalOptimizationObjectiveConfig", }); internal_static_google_cloud_automl_v1beta1_TablesAnnotation_descriptor = getDescriptor().getMessageTypes().get(2); diff --git a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/TablesModelMetadata.java b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/TablesModelMetadata.java index c756b6906439..aa8324fd00ec 100644 --- a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/TablesModelMetadata.java +++ b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/java/com/google/cloud/automl/v1beta1/TablesModelMetadata.java @@ -89,11 +89,11 @@ private TablesModelMetadata( } case 42: { - if (!((mutable_bitField0_ & 0x00000008) != 0)) { + if (!((mutable_bitField0_ & 0x00000020) != 0)) { tablesModelColumnInfo_ = new java.util.ArrayList< com.google.cloud.automl.v1beta1.TablesModelColumnInfo>(); - mutable_bitField0_ |= 0x00000008; + mutable_bitField0_ |= 0x00000020; } tablesModelColumnInfo_.add( input.readMessage( @@ -116,6 +116,18 @@ private TablesModelMetadata( disableEarlyStopping_ = input.readBool(); break; } + case 141: + { + additionalOptimizationObjectiveConfigCase_ = 17; + additionalOptimizationObjectiveConfig_ = input.readFloat(); + break; + } + case 149: + { + additionalOptimizationObjectiveConfigCase_ = 18; + additionalOptimizationObjectiveConfig_ = input.readFloat(); + break; + } default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { @@ -133,7 +145,7 @@ private TablesModelMetadata( if (((mutable_bitField0_ & 0x00000002) != 0)) { inputFeatureColumnSpecs_ = java.util.Collections.unmodifiableList(inputFeatureColumnSpecs_); } - if (((mutable_bitField0_ & 0x00000008) != 0)) { + if (((mutable_bitField0_ & 0x00000020) != 0)) { tablesModelColumnInfo_ = java.util.Collections.unmodifiableList(tablesModelColumnInfo_); } this.unknownFields = unknownFields.build(); @@ -157,6 +169,48 @@ public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { } private int bitField0_; + private int additionalOptimizationObjectiveConfigCase_ = 0; + private java.lang.Object additionalOptimizationObjectiveConfig_; + + public enum AdditionalOptimizationObjectiveConfigCase + implements com.google.protobuf.Internal.EnumLite { + OPTIMIZATION_OBJECTIVE_RECALL_VALUE(17), + OPTIMIZATION_OBJECTIVE_PRECISION_VALUE(18), + ADDITIONALOPTIMIZATIONOBJECTIVECONFIG_NOT_SET(0); + private final int value; + + private AdditionalOptimizationObjectiveConfigCase(int value) { + this.value = value; + } + /** @deprecated Use {@link #forNumber(int)} instead. */ + @java.lang.Deprecated + public static AdditionalOptimizationObjectiveConfigCase valueOf(int value) { + return forNumber(value); + } + + public static AdditionalOptimizationObjectiveConfigCase forNumber(int value) { + switch (value) { + case 17: + return OPTIMIZATION_OBJECTIVE_RECALL_VALUE; + case 18: + return OPTIMIZATION_OBJECTIVE_PRECISION_VALUE; + case 0: + return ADDITIONALOPTIMIZATIONOBJECTIVECONFIG_NOT_SET; + default: + return null; + } + } + + public int getNumber() { + return this.value; + } + }; + + public AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase() { + return AdditionalOptimizationObjectiveConfigCase.forNumber( + additionalOptimizationObjectiveConfigCase_); + } + public static final int TARGET_COLUMN_SPEC_FIELD_NUMBER = 2; private com.google.cloud.automl.v1beta1.ColumnSpec targetColumnSpec_; /** @@ -374,6 +428,10 @@ public com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getInputFeatureColumn * operating characteristic (ROC) curve. * "MINIMIZE_LOG_LOSS" - Minimize log loss. * "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. + * "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified + * recall value. + * "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified + * precision value. * CLASSIFICATION_MULTI_CLASS : * "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. * REGRESSION: @@ -412,6 +470,10 @@ public java.lang.String getOptimizationObjective() { * operating characteristic (ROC) curve. * "MINIMIZE_LOG_LOSS" - Minimize log loss. * "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. + * "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified + * recall value. + * "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified + * precision value. * CLASSIFICATION_MULTI_CLASS : * "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. * REGRESSION: @@ -437,6 +499,42 @@ public com.google.protobuf.ByteString getOptimizationObjectiveBytes() { } } + public static final int OPTIMIZATION_OBJECTIVE_RECALL_VALUE_FIELD_NUMBER = 17; + /** + * + * + *
+ * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_recall_value = 17;
+ */
+ public float getOptimizationObjectiveRecallValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 17) {
+ return (java.lang.Float) additionalOptimizationObjectiveConfig_;
+ }
+ return 0F;
+ }
+
+ public static final int OPTIMIZATION_OBJECTIVE_PRECISION_VALUE_FIELD_NUMBER = 18;
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_precision_value = 18;
+ */
+ public float getOptimizationObjectivePrecisionValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 18) {
+ return (java.lang.Float) additionalOptimizationObjectiveConfig_;
+ }
+ return 0F;
+ }
+
public static final int TABLES_MODEL_COLUMN_INFO_FIELD_NUMBER = 5;
private java.util.List+ * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_recall_value = 17;
+ */
+ public float getOptimizationObjectiveRecallValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 17) {
+ return (java.lang.Float) additionalOptimizationObjectiveConfig_;
+ }
+ return 0F;
+ }
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_recall_value = 17;
+ */
+ public Builder setOptimizationObjectiveRecallValue(float value) {
+ additionalOptimizationObjectiveConfigCase_ = 17;
+ additionalOptimizationObjectiveConfig_ = value;
+ onChanged();
+ return this;
+ }
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_recall_value = 17;
+ */
+ public Builder clearOptimizationObjectiveRecallValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 17) {
+ additionalOptimizationObjectiveConfigCase_ = 0;
+ additionalOptimizationObjectiveConfig_ = null;
+ onChanged();
+ }
+ return this;
+ }
+
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_precision_value = 18;
+ */
+ public float getOptimizationObjectivePrecisionValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 18) {
+ return (java.lang.Float) additionalOptimizationObjectiveConfig_;
+ }
+ return 0F;
+ }
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_precision_value = 18;
+ */
+ public Builder setOptimizationObjectivePrecisionValue(float value) {
+ additionalOptimizationObjectiveConfigCase_ = 18;
+ additionalOptimizationObjectiveConfig_ = value;
+ onChanged();
+ return this;
+ }
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_precision_value = 18;
+ */
+ public Builder clearOptimizationObjectivePrecisionValue() {
+ if (additionalOptimizationObjectiveConfigCase_ == 18) {
+ additionalOptimizationObjectiveConfigCase_ = 0;
+ additionalOptimizationObjectiveConfig_ = null;
+ onChanged();
+ }
+ return this;
+ }
+
private java.util.List+ * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_recall_value = 17;
+ */
+ float getOptimizationObjectiveRecallValue();
+
+ /**
+ *
+ *
+ * + * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". + * Must be between 0 and 1, inclusive. + *+ * + *
float optimization_objective_precision_value = 18;
+ */
+ float getOptimizationObjectivePrecisionValue();
+
/**
*
*
@@ -353,4 +385,8 @@ com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder getTablesModelCol
* bool disable_early_stopping = 12;
*/
boolean getDisableEarlyStopping();
+
+ public com.google.cloud.automl.v1beta1.TablesModelMetadata
+ .AdditionalOptimizationObjectiveConfigCase
+ getAdditionalOptimizationObjectiveConfigCase();
}
diff --git a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/proto/google/cloud/automl/v1beta1/tables.proto b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/proto/google/cloud/automl/v1beta1/tables.proto
index b6403d5724f9..1cf916367faf 100644
--- a/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/proto/google/cloud/automl/v1beta1/tables.proto
+++ b/google-api-grpc/proto-google-cloud-automl-v1beta1/src/main/proto/google/cloud/automl/v1beta1/tables.proto
@@ -142,6 +142,10 @@ message TablesModelMetadata {
// operating characteristic (ROC) curve.
// "MINIMIZE_LOG_LOSS" - Minimize log loss.
// "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
+ // "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
+ // recall value.
+ // "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
+ // precision value.
//
// CLASSIFICATION_MULTI_CLASS :
// "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
@@ -157,6 +161,19 @@ message TablesModelMetadata {
// "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
string optimization_objective = 4;
+ // Additional optimization objective configuration. Required for
+ // `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
+ // otherwise unused.
+ oneof additional_optimization_objective_config {
+ // Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
+ // Must be between 0 and 1, inclusive.
+ float optimization_objective_recall_value = 17;
+
+ // Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
+ // Must be between 0 and 1, inclusive.
+ float optimization_objective_precision_value = 18;
+ }
+
// Output only. Auxiliary information for each of the
// input_feature_column_specs with respect to this particular model.
repeated TablesModelColumnInfo tables_model_column_info = 5;
diff --git a/google-cloud-clients/google-cloud-automl/synth.metadata b/google-cloud-clients/google-cloud-automl/synth.metadata
index 25b3313943ee..2b6421e0a3c0 100644
--- a/google-cloud-clients/google-cloud-automl/synth.metadata
+++ b/google-cloud-clients/google-cloud-automl/synth.metadata
@@ -1,19 +1,19 @@
{
- "updateTime": "2019-06-27T07:33:51.353859Z",
+ "updateTime": "2019-07-11T07:33:58.144304Z",
"sources": [
{
"generator": {
"name": "artman",
- "version": "0.29.1",
- "dockerImage": "googleapis/artman@sha256:b2a73f4dda03ef8fcaa973e3ba26d0cf34091f6c22c70add663af325931aef4d"
+ "version": "0.29.4",
+ "dockerImage": "googleapis/artman@sha256:63f21e83cb92680b7001dc381069e962c9e6dee314fd8365ac554c07c89221fb"
}
},
{
"git": {
"name": "googleapis",
"remote": "https://github.com/googleapis/googleapis.git",
- "sha": "f46206aff84f4b2cde590f1e0791112214f07080",
- "internalRef": "255318896"
+ "sha": "c50d9e822e19e069b7e3758736ea58cb4f35267c",
+ "internalRef": "257512381"
}
}
],