
오픈소스 트랜드 분석

Github, StackOverFlow
데이터 수집, 분석을 통한

대시보드 구축

2팀 2조 프로그래머스 데이터 엔지니어링 데브코스 1기
파이널 프로젝트

발표자 : 남윤아
팀원 : 김상희, 김혜민, 남윤아

활용 기술 및 프레임워크

주제 소개 아키텍처 및 ERD

2

1 3

목차

프로그래머스 데이터 엔지니어링 데브코스 1기
파이널 프로젝트

2팀 2조

주요 구현 사항4

2021 오픈소스SW(OSS) 실태조사 보고서

프로그래머스 데이터 엔지니어링 데브코스 1기
파이널 프로젝트

2팀 2조

주제 소개

오픈 소스 트렌드를 쉽고 자세하게 파악할 수 있
도록 데이터 파이프라인 개발과 대시보드 제공

1

오픈소스 트랜드 분석

글로벌 기업의 오픈소스 플랫폼 인수

02. 활용 기술 및 프레임워크
활용 기술과 개발 환경 (요금)

🤔

어떻게 하면 한정된 자원 안에
프로젝트를 완수할 수 있을까?

Free Tier 서비스 최대 활용
프리티어 안에서 사용할 수 있는 서비
스를 최대한 활용하여 비용 절감

불필요한 비용 발생 최소화
타 region 간 데이터 이동으로 인해 발
생하는 비용 등 불필요한 비용 발생 최
소화

오픈 소스 및 Free trial 활용
Airflow, Snowflake Free trial을 활
용하여 비용 발생 최소화

1

2

3

환경 및 사용금액 |
기술 스택 Develop Production

사용 금액 (23.09.03 기준)
(AWS Region: US-EAST1)

Apache Spark
(Python)

로컬 (Docker)
Amazon EMR
(m5.xlarge)

USD 0.95

Apache Airflow
& monitoring

(Python)
로컬 (Docker Compose)

Amazon EC2
(t3.2xlarge)

USD 69.93

Data Warehouse Snowflake Snowflake 0 (Free trial)

Data Lake Amazon S3 Amazon S3 USD 0.42

AWS Monitoring - Amazon CloudWatch USD 0.16

Dashboard Preset Preset 0 (Free trial)

SCM (Software
Configuration
Management)

Github Github 0

기타
Amazon SecretManager

Amazon Lambda
USD 4.01

총 금액 - - USD 75.47

02. 활용 기술 및 프레임워크
활용 기술과 개발 환경 (요금)

Develop과
Production 환경 구분

raw : 수집한 데이터
analytics : 정제한 데이터
spark_scripts : Amazon EMR
Spark 코드
cluster_log : Amazon EMR
클러스터 로그

 Amazon S3 :

데이터 레이크,
데이터 웨어하우스 구축

03. 아키텍처 및 ERD
프로젝트 인프라 구성도 (AWS 아키텍쳐)

03. 아키텍처 및 ERD
Entity Relationship Diagram

04. 주요 구현 사항

ETL

2팀 2조 프로그래머스 데이터 엔지니어링 데브코스 1기
파이널 프로젝트

DAG 명 스케줄링 데이터 소스 수집 항목 및 설명 수집 기간

github_repo 1일 Github Star/Fork 순으로 각 100개의 Repository 목록 8. 28~9. 3

github_meta 1일 Github license 목록 8. 28~9. 3

github_detail 1시간 Github repository의 issue, pull request, commit 정보 8. 28~9. 3

github_info 1시간 Github repository의 release, project, language, fork 정보 8. 28~9. 3

github_metric 1시간 Github repository의 contributor 별 활동 (additions, deletions, commits) 8. 28~9. 3

stackoverflow_question
_list

1일 StackOverFlow repository와 관련된 질문 목록 수 8. 28~9. 3

emr_repo 1일 S3 - Raw Data
Repository 목록 중복 제거 후 Repository_TB에 맞게

변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

emr_meta 1일 S3 - Raw Data
license 목록 중복 제거 후 LICENSE_TB에 맞게

변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

emr_detail 1시간 S3 - Raw Data
issue, pull request, commit 정보 중복 제거 후
각 TABLE 에 맞게 변환한 뒤 parquet로 S3에 저장

8. 28~9. 3

emr_info 1시간 S3 - Raw Data
release, project, language, fork 정보 중복 제거 후
각 TABLE에 맞게 변환한 뒤 parquet로 S3에 저장

8. 28~9. 3

emr_metric 1시간 S3 - Raw Data
contributor 별 활동 정보 중복 제거 후

CM_ACT_TB에 맞게 변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

s3→snowflake 하루 S3 - Analytics S3에 있는 데이터를 snowflake로 적재 8.28 ~

04. 주요 구현 사항 - 수집 (Airflow)
1) 수집 데이터 및 DAG 종류

2팀 2조

1 2 3

2) 세부 구현 사항

Dynamic DAG 작성 Flask REST-API 개발Plugin 파일

AWS 관련

Slack 호출
Flask API 호출
JSON 저장
Github API 및 Pytrend 호출 등

 (AWS Secret Manager, AWS S3)

Repository의 고유 ID와 OWNER/REPO 정보를 Redis에 저장함
Read/Write 속도가 빠른 Key-Value 형식의 Redis

비교적 가벼운 Flask 프레임워크
향후 Redis 서버를 별도로 구축하는 것을 고려하여 REST API 개발

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)

Airflow 관점

DAG 관점 Task 관점

3) Airflow Configuration 및 파라미터 튜닝

AIRFLOW__CORE__PARALLELISM: '512'
AIRFLOW__CELERY__WORKER_CONCURRENCY: 512

AIRFLOW__SCHEDULER__MIN_FILE_PROCESS_INTERVAL: 40
AIRFLOW__SCHEDULER__DAG_DIR_LIST_INTERVAL: 60
AIRFLOW__SCHEDULER__PARSING_PROCESSES: 4

AIRFLOW__CORE__DEFUALT_TIMEZONE: utc

최대 512개의 Task만 동시 실행 가능
Task를 실행시키는 Celery의 큐 수 512개
DAG 구문 분석을 병렬로 실행할 수 있는 프로세스 수 4개

 (Amazon EC2 t3.2xlarge 기준 vCPU수 8개)

DAG별로 최대 실행 가능한 DAG 및 Task 수에 제한을 둠 Task에 Pool을 두어 API 동시 호출 수(=Task 수) 제한함

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)

원본 데이터
/raw/github/{api명}/2023/08/15
/raw/googletrend/2023/08/15
/raw/stackoverflow/2023/08/15
분석 데이터
/analytics/github/{api명}/2023/08/15
/analytics/googletrend/2023/08/15
/analytics/stackoverflow/2023/08/15

4) Raw Data 적재
 1. Amazon S3 Partitioning

데이터 저장할때 가능한 64MB 이상으로 저장되게끔 구성
데이터 스키마 형식에 맞게 필요한 칼럼 정보만 추출 후 json 파일로 저장
S3 API 비용 줄이기 위함
데이터 소스와 수집 주기가 비슷한 API끼리 묶음

Partitioning 적용하여 Read/Write 성능을 높임

 2. 수집한 데이터 (23.09.03 기준)
수집 기간 : 2023.08.28 ~ 2023.09.03 (7일)
총 데이터 크기 : 6.1 GB

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)

04. 주요 구현 사항 - 정제 및 적재 2팀 2조
Amazon EMR
 1. Amazon EMR Cluster 구성

워커 노드를 사용하지 않고 단일 마스터 노드로 구성
클러스터당 처리해야할 데이터의 크기가 100mb 이
내

cluster의 log 정보는 S3에 저장
Cluster 생성 후 데이터 정제 Step으로 넘어가게끔 설정

 2. Amazon EMR 구현 사항

비용을 최소화하기 위해 EMR Cluster 생성부터 Step 실행, Cluster
종료까지의 과정을 자동화 함

EmrJobFlowSensor를 통해 cluster 생성 실패 또는 오류 발생
시 cluster가 종료하도록 설정

Snowflake 및 S3 적재 시 데이터의 속도 및 크기를 고려하여
parquet 형식으로 저장

04. 주요 구현 사항 - 시각화
1) Preset

2팀 2조

04. 주요 구현 사항 - 시각화
1) Preset

2팀 2조

04. 주요 구현 사항 - 모니터링
1) Slack 알람 기능

Raw 데이터 수집과 EMR을 통한 데이터 정제 및 적재를 위한

수신자가 실시간으로 데이터 파이프라인을 관리할 수 있게 함

 Dag 실행 결과와 에러 내용을 Slack으로 발송

2팀 2조

04. 주요 구현 사항 - 모니터링
2) Grafana 대시 보드 구성
 StatsD + Prometheus + Grafana

StatsD로 수집한 Metric 정보를 시계열 데이터 베이스 Prometheus에 저장하고
대시보드 툴인 Grafana로 Prometheus의 Metric 데이터를 시각화한다.

Airflow는 내부적으로 StatsD를 통해 Metric을 외부로 전송 가능함
Prometheus 는 PromQL 언어로 쿼리할 수 있는 시계열 데이터베이스

Grafana 대시보드 : Scheduler 상태 및 Task, Job, DAG 상태 등

2팀 2조

Grafana 영상 (구글 드라이브 링크)

https://drive.google.com/file/d/1VsNsWHem9AHrZ_-9xWtYgcblDy-9Ri8I/view?usp=sharing

04. 주요 구현 사항 - 모니터링
3) Amazon CloudWatch & EventBridge

이슈: ec2에 할당된 용량을 모두 사용할 시 airflow가 동작하지 않음
이를 방지하기 위해 할당된 용량의 85% 도달 시 slack 알림

Amazon CloudWatch 경보를 트리거로 설정하여 경보 내용이 Slack으로 전달 하
게끔 Lambda함수를 생성함
EC2의 상태가 “shutting-dowm”, “stopping”, “stopped” 시 Slack 알림이 가도록
Amazon EventBridge 규칙을 생성함

2팀 2조

Airflow Web UI - Scheduler 이슈
Amazon Clouwatch의 Usage 알림

Usage 관련 Slack 알람

감사합니다

프로그래머스 데이터 엔지니어링 데브코스 1기
파이널 프로젝트

2팀 2조

