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주제 소개

오픈 소스 트렌드를 쉽고 자세하게 파악할 수 있
도록 데이터 파이프라인 개발과 대시보드 제공

1

오픈소스 트랜드 분석 

글로벌 기업의 오픈소스 플랫폼 인수



02. 활용 기술 및 프레임워크 
활용 기술과 개발 환경 (요금)

🤔

어떻게 하면 한정된 자원 안에 
프로젝트를 완수할 수 있을까?

Free Tier 서비스 최대 활용
프리티어 안에서 사용할 수 있는 서비
스를 최대한 활용하여 비용 절감

불필요한 비용 발생 최소화
타 region 간 데이터 이동으로 인해 발
생하는 비용 등 불필요한 비용 발생 최
소화

오픈 소스 및 Free trial 활용
Airflow, Snowflake Free trial을 활
용하여 비용 발생 최소화

1

2

3



환경 및 사용금액 | 
기술 스택 Develop Production

사용 금액 (23.09.03 기준)
(AWS Region: US-EAST1)

Apache Spark
(Python)

로컬 (Docker)
Amazon EMR
(m5.xlarge)

USD 0.95

Apache Airflow 
& monitoring

(Python) 
로컬 (Docker Compose)

Amazon EC2
(t3.2xlarge) 

USD 69.93

Data Warehouse Snowflake Snowflake 0 (Free trial)

Data Lake Amazon S3 Amazon S3 USD 0.42

AWS Monitoring - Amazon CloudWatch USD 0.16

Dashboard Preset Preset 0 (Free trial)

SCM (Software
Configuration
Management)

Github Github 0

기타 
Amazon SecretManager

Amazon Lambda
USD 4.01

총 금액 - - USD 75.47

02. 활용 기술 및 프레임워크 
활용 기술과 개발 환경 (요금)

Develop과 
Production 환경 구분

raw : 수집한 데이터
analytics : 정제한 데이터
spark_scripts : Amazon EMR
Spark 코드
cluster_log : Amazon EMR    
클러스터 로그

  Amazon S3 : 



데이터 레이크,
데이터 웨어하우스 구축

03. 아키텍처 및 ERD
프로젝트 인프라 구성도 (AWS 아키텍쳐) 



03. 아키텍처 및 ERD
Entity Relationship Diagram



04. 주요 구현 사항

ETL

2팀 2조 프로그래머스 데이터 엔지니어링 데브코스 1기 
파이널 프로젝트



DAG 명 스케줄링 데이터 소스 수집 항목 및 설명 수집 기간

github_repo 1일 Github Star/Fork 순으로 각 100개의 Repository 목록 8. 28~9. 3

github_meta 1일 Github license 목록 8. 28~9. 3

github_detail 1시간 Github repository의 issue, pull request, commit 정보 8. 28~9. 3

github_info 1시간 Github repository의 release, project, language, fork 정보 8. 28~9. 3

github_metric 1시간 Github repository의 contributor 별 활동 (additions, deletions, commits) 8. 28~9. 3

stackoverflow_question
_list

1일 StackOverFlow repository와 관련된 질문 목록 수 8. 28~9. 3

emr_repo 1일 S3 - Raw Data
Repository 목록 중복 제거 후 Repository_TB에 맞게 

변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

emr_meta 1일 S3 - Raw Data
license 목록 중복 제거 후 LICENSE_TB에 맞게 

변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

emr_detail 1시간 S3 - Raw Data
issue, pull request, commit 정보 중복 제거 후 
각 TABLE 에 맞게 변환한 뒤 parquet로 S3에 저장

8. 28~9. 3

emr_info 1시간 S3 - Raw Data
release, project, language, fork 정보 중복 제거 후 
각 TABLE에 맞게 변환한 뒤 parquet로 S3에 저장

8. 28~9. 3

emr_metric 1시간 S3 - Raw Data
contributor 별 활동 정보 중복 제거 후 

CM_ACT_TB에 맞게 변환한 뒤 parquet로 S3에 저장
8. 28~9. 3

s3→snowflake 하루 S3 - Analytics S3에 있는 데이터를 snowflake로 적재 8.28 ~ 

04. 주요 구현 사항 - 수집 (Airflow)
1) 수집 데이터 및 DAG 종류 

2팀 2조 



1 2 3

2) 세부 구현 사항

Dynamic DAG 작성 Flask REST-API 개발Plugin 파일

AWS 관련 

Slack 호출
Flask API 호출
JSON 저장
Github API 및 Pytrend 호출 등

      (AWS Secret Manager, AWS S3)

Repository의 고유 ID와 OWNER/REPO 정보를 Redis에 저장함
Read/Write 속도가 빠른 Key-Value 형식의 Redis

비교적 가벼운 Flask 프레임워크
향후 Redis 서버를 별도로 구축하는 것을 고려하여 REST API 개발

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)



Airflow 관점

DAG 관점 Task 관점

3) Airflow Configuration 및 파라미터 튜닝

AIRFLOW__CORE__PARALLELISM: '512'
AIRFLOW__CELERY__WORKER_CONCURRENCY: 512

AIRFLOW__SCHEDULER__MIN_FILE_PROCESS_INTERVAL: 40
AIRFLOW__SCHEDULER__DAG_DIR_LIST_INTERVAL: 60
AIRFLOW__SCHEDULER__PARSING_PROCESSES: 4 

AIRFLOW__CORE__DEFUALT_TIMEZONE: utc

최대 512개의 Task만 동시 실행 가능
Task를 실행시키는 Celery의 큐 수 512개
DAG 구문 분석을 병렬로 실행할 수 있는 프로세스 수 4개 

        (Amazon EC2 t3.2xlarge 기준 vCPU수 8개)

DAG별로 최대 실행 가능한 DAG 및 Task 수에 제한을 둠  Task에 Pool을 두어 API 동시 호출 수(=Task 수) 제한함

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)



# 원본 데이터
/raw/github/{api명}/2023/08/15
/raw/googletrend/2023/08/15
/raw/stackoverflow/2023/08/15
# 분석 데이터
/analytics/github/{api명}/2023/08/15
/analytics/googletrend/2023/08/15
/analytics/stackoverflow/2023/08/15

4) Raw Data 적재
    1. Amazon S3 Partitioning

데이터 저장할때 가능한 64MB 이상으로 저장되게끔 구성
데이터 스키마 형식에 맞게 필요한 칼럼 정보만 추출 후 json 파일로 저장
S3 API 비용 줄이기 위함
데이터 소스와 수집 주기가 비슷한 API끼리 묶음

Partitioning 적용하여 Read/Write 성능을 높임

    2. 수집한 데이터 (23.09.03 기준)
수집 기간 : 2023.08.28 ~ 2023.09.03 (7일)
총 데이터 크기 :   6.1 GB

2팀 2조 04. 주요 구현 사항 - 수집 (Airflow)



04. 주요 구현 사항 - 정제 및 적재 2팀 2조 
Amazon EMR
    1. Amazon EMR Cluster 구성

워커 노드를 사용하지 않고 단일 마스터 노드로 구성
클러스터당 처리해야할 데이터의 크기가 100mb 이
내

cluster의 log 정보는 S3에 저장
Cluster 생성 후 데이터 정제 Step으로 넘어가게끔 설정

    2. Amazon EMR 구현 사항

비용을 최소화하기 위해 EMR Cluster 생성부터 Step 실행, Cluster
종료까지의 과정을 자동화 함

EmrJobFlowSensor를 통해 cluster 생성 실패 또는 오류 발생
시 cluster가 종료하도록 설정

Snowflake 및 S3 적재 시 데이터의 속도 및 크기를 고려하여
parquet 형식으로  저장



04. 주요 구현 사항 - 시각화
1) Preset

2팀 2조 



04. 주요 구현 사항 - 시각화
1) Preset

2팀 2조 



04. 주요 구현 사항 - 모니터링
1)  Slack 알람 기능

Raw 데이터 수집과 EMR을 통한 데이터 정제 및 적재를 위한  

수신자가 실시간으로 데이터 파이프라인을 관리할 수 있게 함

       Dag 실행 결과와 에러 내용을 Slack으로 발송

2팀 2조 



04. 주요 구현 사항 - 모니터링
2)  Grafana 대시 보드 구성
      StatsD + Prometheus + Grafana

StatsD로 수집한 Metric 정보를 시계열 데이터 베이스 Prometheus에 저장하고
대시보드 툴인 Grafana로 Prometheus의 Metric 데이터를 시각화한다.

Airflow는 내부적으로 StatsD를 통해 Metric을 외부로 전송 가능함
Prometheus 는 PromQL 언어로 쿼리할 수 있는 시계열 데이터베이스

Grafana 대시보드 :  Scheduler 상태 및 Task, Job, DAG 상태 등
    

2팀 2조 

Grafana 영상 (구글 드라이브 링크)

https://drive.google.com/file/d/1VsNsWHem9AHrZ_-9xWtYgcblDy-9Ri8I/view?usp=sharing


04. 주요 구현 사항 - 모니터링
3) Amazon CloudWatch & EventBridge

이슈: ec2에 할당된 용량을 모두 사용할 시 airflow가 동작하지 않음
이를 방지하기 위해 할당된 용량의 85% 도달 시 slack 알림

Amazon CloudWatch 경보를 트리거로 설정하여 경보 내용이 Slack으로 전달 하
게끔 Lambda함수를 생성함
EC2의 상태가 “shutting-dowm”, “stopping”, “stopped” 시 Slack 알림이 가도록
Amazon EventBridge 규칙을 생성함

2팀 2조 

Airflow Web UI  - Scheduler 이슈
Amazon Clouwatch의 Usage 알림

Usage 관련 Slack 알람
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