diff --git a/doc/index.rst b/doc/index.rst index 24c1931f54..8b8a2b5bb4 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -25,22 +25,10 @@ the technology behind *auto-sklearn* by reading our paper published at `NeurIPS 2015 `_ . -.. topic:: NEW: Auto-sklearn 2.0 +.. topic:: NEW: Text feature support - Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself - and contains a multitude of improvements which speed up the fitting the AutoML system. - -*auto-sklearn 2.0* works the same way as regular *auto-sklearn* and you can use it via - -.. code:: python - - from autosklearn.experimental.askl2 import AutoSklearn2Classifier - -A paper describing our advances is available on `arXiv `_. - -.. topic:: NEW: Material from tutorials and presentations - - We provide slides and notebooks from talks and tutorials here: `auto-sklearn-talks `_ + Auto-sklearn now supports text features, check our new example: + :ref:`sphx_glr_examples_40_advanced_example_text_preprocessing.py` Example @@ -64,7 +52,6 @@ Example This will run for one hour and should result in an accuracy above 0.98. - Manual ****** @@ -74,6 +61,11 @@ Manual * :ref:`extending` * :ref:`faq` +Additional Material +******************* + +We provide slides and notebooks from talks and tutorials here: +`auto-sklearn-talks `_ License ******* diff --git a/doc/manual.rst b/doc/manual.rst index cdfcd3cbe0..c3a37e19e3 100644 --- a/doc/manual.rst +++ b/doc/manual.rst @@ -19,6 +19,25 @@ give short explanations (click the title to expand text), e.g. We provide resources for talks, tutorials and presentations on *auto-sklearn* under `auto-sklearn-talks `_ +.. _askl2: + +Auto-sklearn 2.0 +================ + +Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself +and contains a multitude of improvements which speed up the fitting the AutoML system. +Concretely, Auto-sklearn 2.0 automatically sets the :ref:`bestmodel`, decides whether it can use +the efficient bandit strategy *Successive Halving* and uses meta-feature free *Portfolios* for +efficient meta-learning. + +*auto-sklearn 2.0* has the same interface as regular *auto-sklearn* and you can use it via + +.. code:: python + + from autosklearn.experimental.askl2 import AutoSklearn2Classifier + +A paper describing our advances is available on `arXiv `_. + .. _limits: Resource limits