Skip to content

Commit ea19a47

Browse files
author
Github Actions
committed
Matthias Feurer: Dummy implementation of a multi-objective ensemble. (#1523)
1 parent 908793d commit ea19a47

File tree

90 files changed

+5332
-6062
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

90 files changed

+5332
-6062
lines changed

development/_downloads/baf53fc945368668a0cd202acebc6220/example_parallel_manual_spawning_cli.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -193,7 +193,7 @@ def cli_start_worker(scheduler_file_name):
193193
delete_tmp_folder_after_terminate=False,
194194
time_left_for_this_task=30,
195195
per_run_time_limit=10,
196-
memory_limit=1024,
196+
memory_limit=2048,
197197
tmp_folder=tmp_folder,
198198
seed=777,
199199
# n_jobs is ignored internally as we pass a dask client.
Binary file not shown.

development/_downloads/c6746d1b897496495baebd219e94d74e/example_parallel_manual_spawning_cli.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -123,7 +123,7 @@
123123
},
124124
"outputs": [],
125125
"source": [
126-
"if __name__ == \"__main__\":\n X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n )\n\n automl = AutoSklearnClassifier(\n delete_tmp_folder_after_terminate=False,\n time_left_for_this_task=30,\n per_run_time_limit=10,\n memory_limit=1024,\n tmp_folder=tmp_folder,\n seed=777,\n # n_jobs is ignored internally as we pass a dask client.\n n_jobs=1,\n # Pass a dask client which connects to the previously constructed cluster.\n dask_client=client,\n )\n automl.fit(X_train, y_train)\n\n automl.fit_ensemble(\n y_train,\n task=MULTICLASS_CLASSIFICATION,\n dataset_name=\"digits\",\n ensemble_kwargs={\"ensemble_size\": 20},\n ensemble_nbest=50,\n )\n\n predictions = automl.predict(X_test)\n print(automl.sprint_statistics())\n print(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))"
126+
"if __name__ == \"__main__\":\n X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)\n X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(\n X, y, random_state=1\n )\n\n automl = AutoSklearnClassifier(\n delete_tmp_folder_after_terminate=False,\n time_left_for_this_task=30,\n per_run_time_limit=10,\n memory_limit=2048,\n tmp_folder=tmp_folder,\n seed=777,\n # n_jobs is ignored internally as we pass a dask client.\n n_jobs=1,\n # Pass a dask client which connects to the previously constructed cluster.\n dask_client=client,\n )\n automl.fit(X_train, y_train)\n\n automl.fit_ensemble(\n y_train,\n task=MULTICLASS_CLASSIFICATION,\n dataset_name=\"digits\",\n ensemble_kwargs={\"ensemble_size\": 20},\n ensemble_nbest=50,\n )\n\n predictions = automl.predict(X_test)\n print(automl.sprint_statistics())\n print(\"Accuracy score\", sklearn.metrics.accuracy_score(y_test, predictions))"
127127
]
128128
},
129129
{
Binary file not shown.
354 Bytes
Loading
-38.6 KB
Loading
-2.88 KB
Loading
438 Bytes
Loading
-2.32 KB
Loading
-1.16 KB
Loading

0 commit comments

Comments
 (0)