@@ -123,10 +123,9 @@ View the models found by auto-sklearn
123123
124124 .. code-block :: none
125125
126- rank ensemble_weight type cost duration
127- model_id
128- 2 1 0.94 random_forest 0.144406 2.573841
129- 25 2 0.06 random_forest 0.341540 3.723741
126+ rank ensemble_weight type cost duration
127+ model_id
128+ 23 1 1.0 gaussian_process 1.250491e-09 9.298741
130129
131130
132131
@@ -153,26 +152,17 @@ Print the final ensemble constructed by auto-sklearn
153152
154153 .. code-block :: none
155154
156- { 2: { 'cost': 0.14440599167790935,
157- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facc1fcca30>,
158- 'ensemble_weight': 0.94,
159- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facc1880eb0>,
160- 'model_id': 2,
161- 'rank': 1,
162- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facc1880f40>,
163- 'sklearn_regressor': RandomForestRegressor(max_features=1.0, n_estimators=512, n_jobs=1,
164- random_state=1, warm_start=True)},
165- 25: { 'cost': 0.34154027518036534,
166- 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7facbe5d7610>,
167- 'ensemble_weight': 0.06,
168- 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7facbc985f40>,
169- 'model_id': 25,
170- 'rank': 2,
171- 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7facbc86ae80>,
172- 'sklearn_regressor': RandomForestRegressor(criterion='friedman_mse', max_features=0.929991924163003,
173- min_samples_leaf=4, min_samples_split=18,
174- n_estimators=512, n_jobs=1, random_state=1,
175- warm_start=True)}}
155+ { 23: { 'cost': 1.250491266091558e-09,
156+ 'data_preprocessor': <autosklearn.pipeline.components.data_preprocessing.DataPreprocessorChoice object at 0x7f979f57eac0>,
157+ 'ensemble_weight': 1.0,
158+ 'feature_preprocessor': <autosklearn.pipeline.components.feature_preprocessing.FeaturePreprocessorChoice object at 0x7f979dc93640>,
159+ 'model_id': 23,
160+ 'rank': 1,
161+ 'regressor': <autosklearn.pipeline.components.regression.RegressorChoice object at 0x7f97b3088df0>,
162+ 'sklearn_regressor': GaussianProcessRegressor(alpha=1.3925975700063739e-11,
163+ kernel=RBF(length_scale=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]),
164+ n_restarts_optimizer=10, normalize_y=True,
165+ random_state=1)}}
176166
177167
178168
@@ -200,7 +190,7 @@ Get the Score of the final ensemble
200190
201191 .. code-block :: none
202192
203- R2 score: 0.8681408622884761
193+ R2 score: 0.9999999998503689
204194
205195
206196
@@ -236,7 +226,7 @@ Get the configuration space
236226 data_preprocessor:feature_type:numerical_transformer:imputation:strategy, Type: Categorical, Choices: {mean, median, most_frequent}, Default: mean
237227 data_preprocessor:feature_type:numerical_transformer:rescaling:__choice__, Type: Categorical, Choices: {minmax, none, normalize, power_transformer, quantile_transformer, robust_scaler, standardize}, Default: standardize
238228 data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:n_quantiles, Type: UniformInteger, Range: [10, 2000], Default: 1000
239- data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Type: Categorical, Choices: {uniform, normal }, Default: uniform
229+ data_preprocessor:feature_type:numerical_transformer:rescaling:quantile_transformer:output_distribution, Type: Categorical, Choices: {normal, uniform }, Default: normal
240230 data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_max, Type: UniformFloat, Range: [0.7, 0.999], Default: 0.75
241231 data_preprocessor:feature_type:numerical_transformer:rescaling:robust_scaler:q_min, Type: UniformFloat, Range: [0.001, 0.3], Default: 0.25
242232 feature_preprocessor:__choice__, Type: Categorical, Choices: {extra_trees_preproc_for_regression, fast_ica, feature_agglomeration, kernel_pca, kitchen_sinks, no_preprocessing, nystroem_sampler, pca, polynomial, random_trees_embedding}, Default: no_preprocessing
@@ -423,7 +413,7 @@ Get the configuration space
423413
424414 .. rst-class :: sphx-glr-timing
425415
426- **Total running time of the script: ** ( 1 minutes 55.260 seconds)
416+ **Total running time of the script: ** ( 1 minutes 57.174 seconds)
427417
428418
429419.. _sphx_glr_download_examples_20_basic_example_multioutput_regression.py :
0 commit comments