diff --git a/docs/ml-ann.md b/docs/ml-ann.md
index d5ddd92af1e96..6e763e8f41568 100644
--- a/docs/ml-ann.md
+++ b/docs/ml-ann.md
@@ -48,76 +48,15 @@ MLPC employes backpropagation for learning the model. We use logistic loss funct
-
-{% highlight scala %}
-import org.apache.spark.ml.classification.MultilayerPerceptronClassifier
-import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
-import org.apache.spark.mllib.util.MLUtils
-import org.apache.spark.sql.Row
-
-// Load training data
-val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_multiclass_classification_data.txt").toDF()
-// Split the data into train and test
-val splits = data.randomSplit(Array(0.6, 0.4), seed = 1234L)
-val train = splits(0)
-val test = splits(1)
-// specify layers for the neural network:
-// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
-val layers = Array[Int](4, 5, 4, 3)
-// create the trainer and set its parameters
-val trainer = new MultilayerPerceptronClassifier()
- .setLayers(layers)
- .setBlockSize(128)
- .setSeed(1234L)
- .setMaxIter(100)
-// train the model
-val model = trainer.fit(train)
-// compute precision on the test set
-val result = model.transform(test)
-val predictionAndLabels = result.select("prediction", "label")
-val evaluator = new MulticlassClassificationEvaluator()
- .setMetricName("precision")
-println("Precision:" + evaluator.evaluate(predictionAndLabels))
-{% endhighlight %}
-
+{% include_example scala/org/apache/spark/examples/ml/MultilayerPerceptronClassifierExample.scala %}
+{% include_example java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java %}
+
-{% highlight java %}
-import org.apache.spark.api.java.JavaRDD;
-import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
-import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
-import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
-import org.apache.spark.mllib.regression.LabeledPoint;
-import org.apache.spark.mllib.util.MLUtils;
-
-// Load training data
-String path = "data/mllib/sample_multiclass_classification_data.txt";
-JavaRDD
data = MLUtils.loadLibSVMFile(sc, path).toJavaRDD();
-DataFrame dataFrame = sqlContext.createDataFrame(data, LabeledPoint.class);
-// Split the data into train and test
-DataFrame[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
-DataFrame train = splits[0];
-DataFrame test = splits[1];
-// specify layers for the neural network:
-// input layer of size 4 (features), two intermediate of size 5 and 4 and output of size 3 (classes)
-int[] layers = new int[] {4, 5, 4, 3};
-// create the trainer and set its parameters
-MultilayerPerceptronClassifier trainer = new MultilayerPerceptronClassifier()
- .setLayers(layers)
- .setBlockSize(128)
- .setSeed(1234L)
- .setMaxIter(100);
-// train the model
-MultilayerPerceptronClassificationModel model = trainer.fit(train);
-// compute precision on the test set
-DataFrame result = model.transform(test);
-DataFrame predictionAndLabels = result.select("prediction", "label");
-MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
- .setMetricName("precision");
-System.out.println("Precision = " + evaluator.evaluate(predictionAndLabels));
-{% endhighlight %}
+
+{% include_example python/ml/multilayer_perceptron_classification.py %}
diff --git a/examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java b/examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java
new file mode 100644
index 0000000000000..f48e1339c5007
--- /dev/null
+++ b/examples/src/main/java/org/apache/spark/examples/ml/JavaMultilayerPerceptronClassifierExample.java
@@ -0,0 +1,74 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.spark.examples.ml;
+
+// $example on$
+import org.apache.spark.SparkConf;
+import org.apache.spark.api.java.JavaSparkContext;
+import org.apache.spark.sql.SQLContext;
+import org.apache.spark.api.java.JavaRDD;
+import org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel;
+import org.apache.spark.ml.classification.MultilayerPerceptronClassifier;
+import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
+import org.apache.spark.mllib.regression.LabeledPoint;
+import org.apache.spark.mllib.util.MLUtils;
+import org.apache.spark.sql.DataFrame;
+// $example off$
+
+/**
+ * An example for Multilayer Perceptron Classification.
+ */
+public class JavaMultilayerPerceptronClassifierExample {
+
+ public static void main(String[] args) {
+ SparkConf conf = new SparkConf().setAppName("JavaMultilayerPerceptronClassifierExample");
+ JavaSparkContext jsc = new JavaSparkContext(conf);
+ SQLContext jsql = new SQLContext(jsc);
+
+ // $example on$
+ // Load training data
+ String path = "data/mllib/sample_multiclass_classification_data.txt";
+ JavaRDD