Skip to content

Commit 68f7e53

Browse files
committed
changes
1 parent 8432ac9 commit 68f7e53

File tree

1 file changed

+2
-90
lines changed

1 file changed

+2
-90
lines changed

docs/ml-survival-regression.md

Lines changed: 2 additions & 90 deletions
Original file line numberDiff line numberDiff line change
@@ -4,93 +4,5 @@ title: Survival Regression - spark.ml
44
displayTitle: Survival Regression - spark.ml
55
---
66

7-
8-
`\[
9-
\newcommand{\R}{\mathbb{R}}
10-
\newcommand{\E}{\mathbb{E}}
11-
\newcommand{\x}{\mathbf{x}}
12-
\newcommand{\y}{\mathbf{y}}
13-
\newcommand{\wv}{\mathbf{w}}
14-
\newcommand{\av}{\mathbf{\alpha}}
15-
\newcommand{\bv}{\mathbf{b}}
16-
\newcommand{\N}{\mathbb{N}}
17-
\newcommand{\id}{\mathbf{I}}
18-
\newcommand{\ind}{\mathbf{1}}
19-
\newcommand{\0}{\mathbf{0}}
20-
\newcommand{\unit}{\mathbf{e}}
21-
\newcommand{\one}{\mathbf{1}}
22-
\newcommand{\zero}{\mathbf{0}}
23-
\]`
24-
25-
26-
In `spark.ml`, we implement the [Accelerated failure time (AFT)](https://en.wikipedia.org/wiki/Accelerated_failure_time_model)
27-
model which is a parametric survival regression model for censored data.
28-
It describes a model for the log of survival time, so it's often called
29-
log-linear model for survival analysis. Different from
30-
[Proportional hazards](https://en.wikipedia.org/wiki/Proportional_hazards_model) model
31-
designed for the same purpose, the AFT model is more easily to parallelize
32-
because each instance contribute to the objective function independently.
33-
34-
Given the values of the covariates $x^{'}$, for random lifetime $t_{i}$ of
35-
subjects i = 1, ..., n, with possible right-censoring,
36-
the likelihood function under the AFT model is given as:
37-
`\[
38-
L(\beta,\sigma)=\prod_{i=1}^n[\frac{1}{\sigma}f_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})]^{\delta_{i}}S_{0}(\frac{\log{t_{i}}-x^{'}\beta}{\sigma})^{1-\delta_{i}}
39-
\]`
40-
Where $\delta_{i}$ is the indicator of the event has occurred i.e. uncensored or not.
41-
Using $\epsilon_{i}=\frac{\log{t_{i}}-x^{'}\beta}{\sigma}$, the log-likelihood function
42-
assumes the form:
43-
`\[
44-
\iota(\beta,\sigma)=\sum_{i=1}^{n}[-\delta_{i}\log\sigma+\delta_{i}\log{f_{0}}(\epsilon_{i})+(1-\delta_{i})\log{S_{0}(\epsilon_{i})}]
45-
\]`
46-
Where $S_{0}(\epsilon_{i})$ is the baseline survivor function,
47-
and $f_{0}(\epsilon_{i})$ is corresponding density function.
48-
49-
The most commonly used AFT model is based on the Weibull distribution of the survival time.
50-
The Weibull distribution for lifetime corresponding to extreme value distribution for
51-
log of the lifetime, and the $S_{0}(\epsilon)$ function is:
52-
`\[
53-
S_{0}(\epsilon_{i})=\exp(-e^{\epsilon_{i}})
54-
\]`
55-
the $f_{0}(\epsilon_{i})$ function is:
56-
`\[
57-
f_{0}(\epsilon_{i})=e^{\epsilon_{i}}\exp(-e^{\epsilon_{i}})
58-
\]`
59-
The log-likelihood function for AFT model with Weibull distribution of lifetime is:
60-
`\[
61-
\iota(\beta,\sigma)= -\sum_{i=1}^n[\delta_{i}\log\sigma-\delta_{i}\epsilon_{i}+e^{\epsilon_{i}}]
62-
\]`
63-
Due to minimizing the negative log-likelihood equivalent to maximum a posteriori probability,
64-
the loss function we use to optimize is $-\iota(\beta,\sigma)$.
65-
The gradient functions for $\beta$ and $\log\sigma$ respectively are:
66-
`\[
67-
\frac{\partial (-\iota)}{\partial \beta}=\sum_{1=1}^{n}[\delta_{i}-e^{\epsilon_{i}}]\frac{x_{i}}{\sigma}
68-
\]`
69-
`\[
70-
\frac{\partial (-\iota)}{\partial (\log\sigma)}=\sum_{i=1}^{n}[\delta_{i}+(\delta_{i}-e^{\epsilon_{i}})\epsilon_{i}]
71-
\]`
72-
73-
The AFT model can be formulated as a convex optimization problem,
74-
i.e. the task of finding a minimizer of a convex function $-\iota(\beta,\sigma)$
75-
that depends coefficients vector $\beta$ and the log of scale parameter $\log\sigma$.
76-
The optimization algorithm underlying the implementation is L-BFGS.
77-
The implementation matches the result from R's survival function
78-
[survreg](https://stat.ethz.ch/R-manual/R-devel/library/survival/html/survreg.html)
79-
80-
## Example:
81-
82-
<div class="codetabs">
83-
84-
<div data-lang="scala" markdown="1">
85-
{% include_example scala/org/apache/spark/examples/ml/AFTSurvivalRegressionExample.scala %}
86-
</div>
87-
88-
<div data-lang="java" markdown="1">
89-
{% include_example java/org/apache/spark/examples/ml/JavaAFTSurvivalRegressionExample.java %}
90-
</div>
91-
92-
<div data-lang="python" markdown="1">
93-
{% include_example python/ml/aft_survival_regression.py %}
94-
</div>
95-
96-
</div>
7+
> This section has been moved into the
8+
[classification and regression section](ml-classification-regression.html#survival-regression).

0 commit comments

Comments
 (0)