diff --git a/src/Data/Fin/Properties.agda b/src/Data/Fin/Properties.agda index e181a291e9..cd30778f12 100644 --- a/src/Data/Fin/Properties.agda +++ b/src/Data/Fin/Properties.agda @@ -955,7 +955,7 @@ private -- then we can find the smallest value for which this is the case. ¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P → - ¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j)) + ¬ (∀ i → P i) → ∃ λ i → (¬ P i) × ((j : Fin′ i) → P (inject j)) ¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P ¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero ... | false because [¬P₀] = (zero , invert [¬P₀] , λ ()) diff --git a/src/Data/List/Relation/Binary/Sublist/Setoid.agda b/src/Data/List/Relation/Binary/Sublist/Setoid.agda index 8915308cf2..b48bc60f47 100644 --- a/src/Data/List/Relation/Binary/Sublist/Setoid.agda +++ b/src/Data/List/Relation/Binary/Sublist/Setoid.agda @@ -44,7 +44,7 @@ _⊇_ : Rel (List A) (c ⊔ ℓ) xs ⊇ ys = ys ⊆ xs _⊂_ : Rel (List A) (c ⊔ ℓ) -xs ⊂ ys = xs ⊆ ys × ¬ (xs ≋ ys) +xs ⊂ ys = xs ⊆ ys × (¬ (xs ≋ ys)) _⊃_ : Rel (List A) (c ⊔ ℓ) xs ⊃ ys = ys ⊂ xs diff --git a/src/Relation/Nullary/Negation/Core.agda b/src/Relation/Nullary/Negation/Core.agda index 5c4efaf4fb..29dc7f37f4 100644 --- a/src/Relation/Nullary/Negation/Core.agda +++ b/src/Relation/Nullary/Negation/Core.agda @@ -27,7 +27,7 @@ private ------------------------------------------------------------------------ -- Negation. -infix 3 ¬_ +infix 1.5 ¬_ ¬_ : Set a → Set a ¬ P = P → ⊥