diff --git a/src/Function/Bundles.agda b/src/Function/Bundles.agda index 6284182845..e16cc550db 100644 --- a/src/Function/Bundles.agda +++ b/src/Function/Bundles.agda @@ -29,6 +29,7 @@ open import Relation.Binary.PropositionalEquality.Core as ≡ using (_≡_) import Relation.Binary.PropositionalEquality.Properties as ≡ open Setoid using (isEquivalence) +open import Relation.Unary using (Pred) private variable @@ -312,7 +313,7 @@ module _ (From : Setoid a ℓ₁) (To : Setoid b ℓ₂) where -- Bundles specialised for propositional equality ------------------------------------------------------------------------ -infix 3 _⟶_ _↣_ _↠_ _⤖_ _⇔_ _↩_ _↪_ _↩↪_ _↔_ +infix 3 _⟶_ _↣_ _↠_ _⤖_ _⇔_ _↩_ _↪_ _↩↪_ _↔_ _↔̇_ _⟶_ : Set a → Set b → Set _ A ⟶ B = Func (≡.setoid A) (≡.setoid B) @@ -340,6 +341,9 @@ A ↩↪ B = BiInverse (≡.setoid A) (≡.setoid B) _↔_ : Set a → Set b → Set _ A ↔ B = Inverse (≡.setoid A) (≡.setoid B) +_↔̇_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _ +A ↔̇ B = ∀ {i} → A i ↔ B i + -- We now define some constructors for the above that -- automatically provide the required congruency proofs.