@@ -335,26 +335,16 @@ which are `Number`s or `AbstractVector`s with the same geometry as `u`.
335335### Constructors
336336
337337```
338- IntegralProblem{iip} (f,lb,ub, p=NullParameters();
339- nout=1, batch = 0, kwargs...)
338+ IntegralProblem(f,domain, p=NullParameters(); kwargs...)
339+ IntegralProblem(f,lb,ub,p=NullParameters(); kwargs...)
340340```
341341
342- - f: the integrand, callable function `y = f(u,p)` for out-of-place or `f(y,u,p)` for in-place.
342+ - f: the integrand, callable function `y = f(u,p)` for out-of-place (default) or an
343+ `IntegralFunction` or `BatchIntegralFunction` for inplace and batching optimizations.
344+ - domain: an object representing an integration domain, i.e. the tuple `(lb, ub)`.
343345- lb: Either a number or vector of lower bounds.
344346- ub: Either a number or vector of upper bounds.
345347- p: The parameters associated with the problem.
346- - nout: The output size of the function f. Defaults to 1, i.e., a scalar valued function.
347- If `nout > 1` f is a vector valued function .
348- - batch: The preferred number of points to batch. This allows user-side parallelization
349- of the integrand. If `batch == 0` no batching is performed.
350- If `batch > 0` both `u` and `y` get an additional dimension added to it.
351- This means that:
352- if `f` is a multi variable function each `u[:,i]` is a different point to evaluate `f` at,
353- if `f` is a single variable function each `u[i]` is a different point to evaluate `f` at,
354- if `f` is a vector valued function each `y[:,i]` is the evaluation of `f` at a different point,
355- if `f` is a scalar valued function `y[i]` is the evaluation of `f` at a different point.
356- Note that batch is a suggestion for the number of points,
357- and it is not necessarily true that batch is the same as batchsize in all algorithms.
358348- kwargs: Keyword arguments copied to the solvers.
359349
360350Additionally, we can supply iip like IntegralProblem{iip}(...) as true or false to declare at
@@ -364,30 +354,58 @@ compile time whether the integrator function is in-place.
364354
365355The fields match the names of the constructor arguments.
366356"""
367- struct IntegralProblem{isinplace, P, F, B , K} <: AbstractIntegralProblem{isinplace}
357+ struct IntegralProblem{isinplace, P, F, T , K} <: AbstractIntegralProblem{isinplace}
368358 f:: F
369- lb:: B
370- ub:: B
371- nout:: Int
359+ domain:: T
372360 p:: P
373- batch:: Int
374361 kwargs:: K
375- @add_kwonly function IntegralProblem {iip} (f, lb, ub, p = NullParameters ();
376- nout = 1 ,
377- batch = 0 , kwargs... ) where {iip}
378- @assert typeof (lb)== typeof (ub) " Type of lower and upper bound must match"
362+ @add_kwonly function IntegralProblem {iip} (f:: AbstractIntegralFunction{iip} , domain,
363+ p = NullParameters ();
364+ kwargs... ) where {iip}
379365 warn_paramtype (p)
380- new {iip, typeof(p), typeof(f), typeof(lb), typeof(kwargs)} (f,
381- lb, ub, nout, p,
382- batch, kwargs)
366+ new {iip, typeof(p), typeof(f), typeof(domain), typeof(kwargs)} (f,
367+ domain, p, kwargs)
383368 end
384369end
385370
386371TruncatedStacktraces. @truncate_stacktrace IntegralProblem 1 4
387372
388- function IntegralProblem (f, lb, ub, args... ;
373+ function IntegralProblem (f:: AbstractIntegralFunction ,
374+ domain,
375+ p = NullParameters ();
389376 kwargs... )
390- IntegralProblem {isinplace(f, 3)} (f, lb, ub, args... ; kwargs... )
377+ IntegralProblem {isinplace(f)} (f, domain, p; kwargs... )
378+ end
379+
380+ function IntegralProblem (f:: AbstractIntegralFunction ,
381+ lb:: B ,
382+ ub:: B ,
383+ p = NullParameters ();
384+ kwargs... ) where {B}
385+ IntegralProblem (f, (lb, ub), p; kwargs... )
386+ end
387+
388+ function IntegralProblem (f, args... ; nout = nothing , batch = nothing , kwargs... )
389+ if nout != = nothing || batch != = nothing
390+ @warn " `nout` and `batch` keywords are deprecated in favor of inplace `IntegralFunction`s or `BatchIntegralFunction`s. See the updated Integrals.jl documentation for details."
391+ end
392+
393+ max_batch = batch === nothing ? 0 : batch
394+ g = if isinplace (f, 3 )
395+ output_prototype = Vector {Float64} (undef, nout === nothing ? 1 : nout)
396+ if max_batch == 0
397+ IntegralFunction (f, output_prototype)
398+ else
399+ BatchIntegralFunction (f, output_prototype, max_batch= max_batch)
400+ end
401+ else
402+ if max_batch == 0
403+ IntegralFunction (f)
404+ else
405+ BatchIntegralFunction (f, max_batch= max_batch)
406+ end
407+ end
408+ IntegralProblem (g, args... ; kwargs... )
391409end
392410
393411struct QuadratureProblem end
@@ -405,8 +423,8 @@ Sampled integral problems are defined as:
405423```math
406424\s um_i w_i y_i
407425```
408- where `y_i` are sampled values of the integrand, and `w_i` are weights
409- assigned by a quadrature rule, which depend on sampling points `x`.
426+ where `y_i` are sampled values of the integrand, and `w_i` are weights
427+ assigned by a quadrature rule, which depend on sampling points `x`.
410428
411429## Problem Type
412430
@@ -415,10 +433,10 @@ assigned by a quadrature rule, which depend on sampling points `x`.
415433```
416434SampledIntegralProblem(y::AbstractArray, x::AbstractVector; dim=ndims(y), kwargs...)
417435```
418- - y: The sampled integrand, must be a subtype of `AbstractArray`.
419- It is assumed that the values of `y` along dimension `dim`
436+ - y: The sampled integrand, must be a subtype of `AbstractArray`.
437+ It is assumed that the values of `y` along dimension `dim`
420438 correspond to the integrand evaluated at sampling points `x`
421- - x: Sampling points, must be a subtype of `AbstractVector`.
439+ - x: Sampling points, must be a subtype of `AbstractVector`.
422440- dim: Dimension along which to integrate. Defaults to the last dimension of `y`.
423441- kwargs: Keyword arguments copied to the solvers.
424442
@@ -434,7 +452,7 @@ struct SampledIntegralProblem{Y, X, K} <: AbstractIntegralProblem{false}
434452 @add_kwonly function SampledIntegralProblem (y:: AbstractArray , x:: AbstractVector ;
435453 dim = ndims (y),
436454 kwargs... )
437- @assert dim <= ndims (y) " The integration dimension `dim` is larger than the number of dimensions of the integrand `y`"
455+ @assert dim<= ndims (y) " The integration dimension `dim` is larger than the number of dimensions of the integrand `y`"
438456 @assert length (x)== size (y, dim) " The integrand `y` must have the same length as the sampling points `x` along the integrated dimension."
439457 @assert axes (x, 1 )== axes (y, dim) " The integrand `y` must obey the same indexing as the sampling points `x` along the integrated dimension."
440458 new {typeof(y), typeof(x), typeof(kwargs)} (y, x, dim, kwargs)
0 commit comments