Skip to content

Commit 98b2a22

Browse files
author
yangyaming
committed
Add error rate calculation script.
1 parent 5974ea9 commit 98b2a22

File tree

1 file changed

+138
-0
lines changed

1 file changed

+138
-0
lines changed

deep_speech_2/error_rate.py

Lines changed: 138 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,138 @@
1+
# -- * -- coding: utf-8 -- * --
2+
import numpy as np
3+
4+
5+
def levenshtein_distance(ref, hyp):
6+
ref_len = len(ref)
7+
hyp_len = len(hyp)
8+
9+
# special case
10+
if ref == hyp:
11+
return 0
12+
if ref_len == 0:
13+
return hyp_len
14+
if hyp_len == 0:
15+
return ref_len
16+
17+
distance = np.zeros((ref_len + 1) * (hyp_len + 1), dtype=np.int64)
18+
distance = distance.reshape((ref_len + 1, hyp_len + 1))
19+
20+
# initialization distance matrix
21+
for j in xrange(hyp_len + 1):
22+
distance[0][j] = j
23+
for i in xrange(ref_len + 1):
24+
distance[i][0] = i
25+
26+
# calculate levenshtein distance
27+
for i in xrange(1, ref_len + 1):
28+
for j in xrange(1, hyp_len + 1):
29+
if ref[i - 1] == hyp[j - 1]:
30+
distance[i][j] = distance[i - 1][j - 1]
31+
else:
32+
s_num = distance[i - 1][j - 1] + 1
33+
i_num = distance[i][j - 1] + 1
34+
d_num = distance[i - 1][j] + 1
35+
distance[i][j] = min(s_num, i_num, d_num)
36+
37+
return distance[ref_len][hyp_len]
38+
39+
40+
def wer(reference, hypophysis, delimiter=' ', filter_none=True):
41+
"""
42+
Calculate word error rate (WER). WER is a popular evaluation metric used
43+
in speech recognition. It compares a reference to an hypophysis and
44+
is defined like this:
45+
46+
.. math::
47+
WER = (Sw + Dw + Iw) / Nw
48+
49+
where
50+
51+
.. code-block:: text
52+
53+
Sw is the number of words subsituted,
54+
Dw is the number of words deleted,
55+
Iw is the number of words inserted,
56+
Nw is the number of words in the reference
57+
58+
We can use levenshtein distance to calculate WER. Take an attention that
59+
this function will truncate the beginning and ending delimiter for
60+
reference and hypophysis sentences before calculating WER.
61+
62+
:param reference: The reference sentence.
63+
:type reference: str
64+
:param hypophysis: The hypophysis sentence.
65+
:type reference: str
66+
:param delimiter: Delimiter of input sentences.
67+
:type delimiter: char
68+
:param filter_none: Whether to remove None value when splitting sentence.
69+
:type filter_none: bool
70+
:return: WER
71+
:rtype: float
72+
"""
73+
74+
if len(reference.strip(delimiter)) == 0:
75+
raise ValueError("Reference's word number should be greater than 0.")
76+
77+
if filter_none == True:
78+
ref_words = filter(None, reference.strip(delimiter).split(delimiter))
79+
hyp_words = filter(None, hypophysis.strip(delimiter).split(delimiter))
80+
else:
81+
ref_words = reference.strip(delimiter).split(delimiter)
82+
hyp_words = reference.strip(delimiter).split(delimiter)
83+
84+
edit_distance = levenshtein_distance(ref_words, hyp_words)
85+
wer = float(edit_distance) / len(ref_words)
86+
return wer
87+
88+
89+
def cer(reference, hypophysis, squeeze=True, ignore_case=False, strip_char=''):
90+
"""
91+
Calculate charactor error rate (CER). CER will compare reference text and
92+
hypophysis text in char-level. CER is defined as:
93+
94+
.. math::
95+
CER = (Sc + Dc + Ic) / Nc
96+
97+
where
98+
99+
.. code-block:: text
100+
101+
Sc is the number of character substituted,
102+
Dc is the number of deleted,
103+
Ic is the number of inserted
104+
Nc is the number of characters in the reference
105+
106+
We can use levenshtein distance to calculate CER. Chinese input should be
107+
encoded to unicode.
108+
109+
:param reference: The reference sentence.
110+
:type reference: str
111+
:param hypophysis: The hypophysis sentence.
112+
:type reference: str
113+
:param squeeze: If set true, consecutive space character
114+
will be squeezed to one
115+
:type squeezed: bool
116+
:param ignore_case: Whether ignoring character case.
117+
:type ignore_case: bool
118+
:param strip_char: If not set to '', strip_char in beginning and ending of
119+
sentence will be truncated.
120+
:type strip_char: char
121+
:return: CER
122+
:rtype: float
123+
"""
124+
if ignore_case == True:
125+
reference = reference.lower()
126+
hypophysis = hypophysis.lower()
127+
if strip_char != '':
128+
reference = reference.strip(strip_char)
129+
hypophysis = hypophysis.strip(strip_char)
130+
if squeeze == True:
131+
reference = ' '.join(filter(None, reference.split(' ')))
132+
hypophysis = ' '.join(filter(None, hypophysis.split(' ')))
133+
134+
if len(reference) == 0:
135+
raise ValueError("Length of reference should be greater than 0.")
136+
edit_distance = levenshtein_distance(reference, hypophysis)
137+
cer = float(edit_distance) / len(reference)
138+
return cer

0 commit comments

Comments
 (0)