-
Notifications
You must be signed in to change notification settings - Fork 876
对多个文档按照要求修改 #5453
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
对多个文档按照要求修改 #5453
Changes from 4 commits
c39d05a
7017d37
39a5c8f
7d381bb
73fb698
68519d1
45b4bd7
edca5d5
0a151b7
da5f0a4
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -6,7 +6,7 @@ Upsample | |||||
| .. py:class:: paddle.nn.Upsample(size=None, scale_factor=None, mode='nearest', align_corners=False, align_mode=0, data_format='NCHW', name=None) | ||||||
|
|
||||||
|
|
||||||
| 该 OP 用于调整一个 batch 中图片的大小。 | ||||||
| 用于调整一个 batch 中图片的大小。 | ||||||
|
|
||||||
| 输入为 3-D Tensor 时形状为(num_batches, channels, in_w),输入为 4-D Tensor 时形状为(num_batches, channels, in_h, in_w)或者(num_batches, in_h, in_w, channels),输入为 5-D Tensor 时形状为(num_batches, channels, in_d, in_h, in_w)或者(num_batches, in_d, in_h, in_w, channels),并且调整大小只适用于深度,高度和宽度对应的维度。 | ||||||
|
|
||||||
|
|
@@ -150,12 +150,12 @@ https://en.wikipedia.org/wiki/Bicubic_interpolation | |||||
| 参数 | ||||||
| ::::::::: | ||||||
|
|
||||||
| - **size** (list|tuple|Variable|None) - 输出 Tensor,输入为 3D 张量时,形状为为(out_w)的 1-D Tensor。输入为 4D 张量时,形状为为(out_h, out_w)的 2-D Tensor。输入为 5-D Tensor 时,形状为(out_d, out_h, out_w)的 3-D Tensor。如果 :code:`out_shape` 是列表,每一个元素可以是整数或者形状为[1]的变量。如果 :code:`out_shape` 是变量,则其维度大小为 1。默认值为 None。 | ||||||
| - **scale_factor** (float|Tensor|list|tuple|None)-输入的高度或宽度的乘数因子。out_shape 和 scale 至少要设置一个。out_shape 的优先级高于 scale。默认值为 None。如果 scale_factor 是一个 list 或 tuple,它必须与输入的 shape 匹配。 | ||||||
| - **size** (list|tuple|Tensor|None) - 输出 Tensor 的形状,输入为 3D 张量时,形状为为(out_w)的 1-D Tensor。输入为 4D 张量时,形状为为(out_h, out_w)的 2-D Tensor。输入为 5-D Tensor 时,形状为(out_d, out_h, out_w)的 3-D Tensor。如果 :code:`size` 是列表,每一个元素可以是整数或者形状为[1]的变量。如果 :code:`size` 是变量,则其维度大小为 1。默认值为 None。 | ||||||
| - **scale_factor** (float|Tensor|list|tuple|None)-输入的深度、高度或宽度的缩放因子。:code:`size` 和 :code:`scale_factor` 至少要设置一个。:code:`size` 的优先级高于:code:`scale_factor`。默认值为 None。如果 scale_factor 是一个 list 或 tuple,它必须与输入的 shape 匹配。 | ||||||
|
||||||
| - **scale_factor** (float|Tensor|list|tuple|None)-输入的深度、高度或宽度的缩放因子。:code:`size` 和 :code:`scale_factor` 至少要设置一个。:code:`size` 的优先级高于:code:`scale_factor`。默认值为 None。如果 scale_factor 是一个 list 或 tuple,它必须与输入的 shape 匹配。 | |
| - **scale_factor** (float|Tensor|list|tuple|None)-输入的深度、高度或宽度的缩放因子。:code:`size` 和 :code:`scale_factor` 至少要设置一个。:code:`size` 的优先级高于 :code:`scale_factor`。默认值为 None。如果 scale_factor 是一个 list 或 tuple,它必须与输入的 shape 匹配。 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
另外 size=None, scale_factor=None ,所以这俩是可选参数啦
Outdated
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
(bool,可选) 和 - 之间加一个空格
默认值为 False。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这个默认值是不是没改
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
明白了
yjphhw marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
yjphhw marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
| Original file line number | Diff line number | Diff line change | ||||
|---|---|---|---|---|---|---|
|
|
@@ -29,13 +29,13 @@ mse_loss | |||||
| ::::::::: | ||||||
| - **input** (Tensor) - 预测值,维度为 :math:`[N_1, N_2, ..., N_k]` 的多维 Tensor。数据类型为 float32 或 float64。 | ||||||
| - **label** (Tensor) - 目标值,维度为 :math:`[N_1, N_2, ..., N_k]` 的多维 Tensor。数据类型为 float32 或 float64。 | ||||||
| - **reduction** (string, optional) - 输出的归约方法可以是'none'、'mean'或'sum'。 | ||||||
| - **reduction** (string, 可选) - 输出的归约方法可以是'none'、'mean'或'sum'。 | ||||||
|
||||||
| - **reduction** (string, 可选) - 输出的归约方法可以是'none'、'mean'或'sum'。 | |
| - **reduction** (str, 可选) - 输出的归约方法可以是'none'、'mean'或'sum'。 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
顺便英文文档也改一下吧~
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
paddle.nn.Maxout(groups, axis=1, name=None)所以group其实应该是必选参数,没有默认值
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
其实这个翻译还是有点问题的,groups
英文的需要在paddle的源代码里改?也就是还需要下载 paddlepaddle的源?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
对的,英文文档在 https://github.com/PaddlePaddle/paddle ,#5453 (comment) 说了怎么找相应的源代码