diff --git a/python/paddle/nn/layer/norm.py b/python/paddle/nn/layer/norm.py index ff64b4dfd3de8c..6127f31103876b 100644 --- a/python/paddle/nn/layer/norm.py +++ b/python/paddle/nn/layer/norm.py @@ -609,7 +609,7 @@ class LayerNorm(Layer): Parameters: normalized_shape(int|list|tuple): Input shape from an expected input of - size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`. + size ``[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`` . If it is a single integer, this module will normalize over the last dimension which is expected to be of that specific size. epsilon(float, optional): The small value added to the variance to prevent @@ -627,7 +627,7 @@ class LayerNorm(Layer): - output: same shape as input x. Returns: - None + ``Tensor`` , the dimension is the same as :attr:`x`, but the internal values have been normalized by ``LayerNorm`` . Examples: