Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 0 additions & 10 deletions paddle/fluid/inference/tensorrt/convert/prelu_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -34,11 +34,7 @@ class PReluOpConverter : public OpConverter {
auto* input = engine_->GetITensor(op_desc.Input("X")[0]);
// Get attrs
std::string mode = BOOST_GET_CONST(std::string, op_desc.GetAttr("mode"));
//
auto* alpha_var = scope.FindVar(op_desc.Input("Alpha")[0]);
PADDLE_ENFORCE_NOT_NULL(
alpha_var, platform::errors::NotFound(
"Variable Alpha of prelu TRT converter is not found."));
auto* alpha_tensor = alpha_var->GetMutable<framework::LoDTensor>();

platform::CPUPlace cpu_place;
Expand All @@ -50,15 +46,9 @@ class PReluOpConverter : public OpConverter {

nvinfer1::ILayer* layer = nullptr;
if (engine_->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
plugin::PReluPluginDynamic* plugin = new plugin::PReluPluginDynamic(
alpha_data, alpha_tensor_temp->numel(), mode);
layer = engine_->AddDynamicPlugin(&input, input_num, plugin);
#else
PADDLE_THROW(platform::errors::Fatal(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"));
#endif
} else {
#if IS_TRT_VERSION_GE(7000)
float* alpha_weight_data = engine_->GetWeightCPUData(
Expand Down
22 changes: 22 additions & 0 deletions paddle/fluid/inference/tensorrt/op_teller.cc
Original file line number Diff line number Diff line change
Expand Up @@ -652,6 +652,28 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
<< desc.Output("Out").size() << ".";
return false;
}

auto* block = desc.Block();
auto* var_desc = block->FindVar(desc.Input("Alpha")[0]);
if (!var_desc) {
VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
return false;
}

auto x_var_name = desc.Input("X")[0];
auto* x_var_desc = block->FindVar(x_var_name);
const auto x_shape = x_var_desc->GetShape();
if (x_shape.size() == 1) {
VLOG(3) << "prelu op does not support input's dim is 1 in tensorrt.";
return false;
}

if (!with_dynamic_shape) {
if (x_shape.size() == 2) {
VLOG(3) << "prelu op does not support input's dim is 2 in tensorrt.";
return false;
}
}
}

if (op_type == "roi_align") {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ if(WITH_GPU AND TENSORRT_FOUND)

foreach(target ${TEST_TRT_CONVERTER})
py_test_modules(${target} MODULES ${target})
set_tests_properties(${target} PROPERTIES TIMEOUT 100)
set_tests_properties(${target} PROPERTIES TIMEOUT 300)
endforeach()
endif()

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
from program_config import TensorConfig, ProgramConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set


class TrtConvertPreluTest(TrtLayerAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True

def sample_program_configs(self):
def generate_input(batch, dim1, dim2, dim3):
shape = [batch]
if dim1 != 0:
shape.append(dim1)
if dim2 != 0:
shape.append(dim2)
if dim3 != 0:
shape.append(dim3)
return np.random.random(shape).astype(np.float32)

def generate_alpha(attrs: List[Dict[str, Any]], dim1, dim2, dim3):
if attrs[0]["mode"] == "all":
return np.random.random(size=(1)).astype(np.float32)
elif attrs[0]["mode"] == "channel":
shape = [1]
if dim1 != 0:
shape.append(dim1)
if dim2 != 0:
shape.append(1)
if dim3 != 0:
shape.append(1)
return np.random.random(size=shape).astype(np.float32)
elif attrs[0]["mode"] == "element":
shape = [1]
if dim1 != 0:
shape.append(dim1)
if dim2 != 0:
shape.append(dim2)
if dim3 != 0:
shape.append(dim3)
return np.random.random(size=shape).astype(np.float32)

for batch in [1, 4]:
for dim1 in [0, 3]:
for dim2 in [0, 16]:
for dim3 in [0, 32]:
self.dim1 = dim1
self.dim2 = dim2
self.dim3 = dim3

if dim1 == 0 and dim2 != 0:
continue
if dim1 == 0 and dim2 == 0 and dim3 != 0:
continue

for mode in ["all", "channel", "element"]:
if mode == "channel" and dim1 == 0:
continue
dics = [{"mode": mode}]
ops_config = [{
"op_type": "prelu",
"op_inputs": {
"X": ["input_data"],
"Alpha": ["alpha_weight"]
},
"op_outputs": {
"Out": ["output_data"]
},
"op_attrs": dics[0]
}]
ops = self.generate_op_config(ops_config)

program_config = ProgramConfig(
ops=ops,
weights={
"alpha_weight": TensorConfig(
data_gen=partial(generate_alpha, dics,
dim1, dim2, dim3))
},
inputs={
"input_data": TensorConfig(
data_gen=partial(generate_input, batch,
dim1, dim2, dim3)),
},
outputs=["output_data"])

yield program_config

def sample_predictor_configs(
self, program_config) -> (paddle_infer.Config, List[int], float):
def generate_dynamic_shape(attrs):
if self.dim1 == 0:
self.dynamic_shape.min_input_shape = {"input_data": [1], }
self.dynamic_shape.max_input_shape = {"input_data": [4], }
self.dynamic_shape.opt_input_shape = {"input_data": [2], }
else:
if self.dim2 == 0 and self.dim3 == 0:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 3],
}
elif self.dim2 != 0 and self.dim3 != 0:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 1, 1, 1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64, 128, 128],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 3, 16, 32],
}
elif self.dim3 == 0:
self.dynamic_shape.min_input_shape = {
"input_data": [1, 1, 1],
}
self.dynamic_shape.max_input_shape = {
"input_data": [4, 64, 256],
}
self.dynamic_shape.opt_input_shape = {
"input_data": [2, 3, 128],
}

def clear_dynamic_shape():
self.dynamic_shape.max_input_shape = {}
self.dynamic_shape.min_input_shape = {}
self.dynamic_shape.opt_input_shape = {}

attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]

# for static_shape
clear_dynamic_shape()
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (1, 2), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (1, 2), 1e-5

# for dynamic_shape
generate_dynamic_shape(attrs)
self.trt_param.precision = paddle_infer.PrecisionType.Float32
yield self.create_inference_config(), (1, 2), 1e-5
self.trt_param.precision = paddle_infer.PrecisionType.Half
yield self.create_inference_config(), (1, 2), 1e-5

def add_skip_trt_case(self):
def teller1(program_config, predictor_config):
if self.dim1 == 0 and self.dim2 == 0 and self.dim3 == 0:
return True
return False

self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT,
"Need to repair the case: the input's dim is 1.")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

描述应该是,TRT本身不支持1维的tensor,这就不需要repair了。

如果没有别的地方要修改,就放到下个pr修改吧


def teller2(program_config, predictor_config):
if (len(self.dynamic_shape.min_input_shape) == 0):
if self.dim1 != 0 and self.dim2 == 0 and self.dim3 == 0:
return True
return False

self.add_skip_case(teller2, SkipReasons.TRT_NOT_SUPPORT,
"Need to repair the case: the input's dim is 2.")

def test(self):
self.add_skip_trt_case()
self.run_test()


if __name__ == "__main__":
unittest.main()