-
Notifications
You must be signed in to change notification settings - Fork 5.9k
add prelu trt converter test case #35512
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 4 commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
3ded396
add prelu trt converter test case
baoachun 4ea8642
add input dim check for prelu op
baoachun 6c0b455
add input dim check for prelu op
baoachun d5d74da
update prelu trt converter test case
baoachun 63d4620
modify prelu trt converter test case skip info
baoachun a79a2ff
modify prelu trt converter test case skip info
baoachun File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
193 changes: 193 additions & 0 deletions
193
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_prelu.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,193 @@ | ||
| # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
| # | ||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||
| # you may not use this file except in compliance with the License. | ||
| # You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, software | ||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
| # See the License for the specific language governing permissions and | ||
| # limitations under the License. | ||
|
|
||
| from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
| from program_config import TensorConfig, ProgramConfig | ||
| import numpy as np | ||
| import paddle.inference as paddle_infer | ||
| from functools import partial | ||
| from typing import Optional, List, Callable, Dict, Any, Set | ||
|
|
||
|
|
||
| class TrtConvertPreluTest(TrtLayerAutoScanTest): | ||
| def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
| return True | ||
|
|
||
| def sample_program_configs(self): | ||
| def generate_input(batch, dim1, dim2, dim3): | ||
| shape = [batch] | ||
| if dim1 != 0: | ||
| shape.append(dim1) | ||
| if dim2 != 0: | ||
| shape.append(dim2) | ||
| if dim3 != 0: | ||
| shape.append(dim3) | ||
| return np.random.random(shape).astype(np.float32) | ||
|
|
||
| def generate_alpha(attrs: List[Dict[str, Any]], dim1, dim2, dim3): | ||
| if attrs[0]["mode"] == "all": | ||
| return np.random.random(size=(1)).astype(np.float32) | ||
| elif attrs[0]["mode"] == "channel": | ||
| shape = [1] | ||
| if dim1 != 0: | ||
| shape.append(dim1) | ||
| if dim2 != 0: | ||
| shape.append(1) | ||
| if dim3 != 0: | ||
| shape.append(1) | ||
| return np.random.random(size=shape).astype(np.float32) | ||
| elif attrs[0]["mode"] == "element": | ||
| shape = [1] | ||
| if dim1 != 0: | ||
| shape.append(dim1) | ||
| if dim2 != 0: | ||
| shape.append(dim2) | ||
| if dim3 != 0: | ||
| shape.append(dim3) | ||
| return np.random.random(size=shape).astype(np.float32) | ||
|
|
||
| for batch in [1, 4]: | ||
| for dim1 in [0, 3]: | ||
| for dim2 in [0, 16]: | ||
| for dim3 in [0, 32]: | ||
| self.dim1 = dim1 | ||
| self.dim2 = dim2 | ||
| self.dim3 = dim3 | ||
|
|
||
| if dim1 == 0 and dim2 != 0: | ||
| continue | ||
| if dim1 == 0 and dim2 == 0 and dim3 != 0: | ||
| continue | ||
|
|
||
| for mode in ["all", "channel", "element"]: | ||
| if mode == "channel" and dim1 == 0: | ||
| continue | ||
| dics = [{"mode": mode}] | ||
| ops_config = [{ | ||
| "op_type": "prelu", | ||
| "op_inputs": { | ||
| "X": ["input_data"], | ||
| "Alpha": ["alpha_weight"] | ||
| }, | ||
| "op_outputs": { | ||
| "Out": ["output_data"] | ||
| }, | ||
| "op_attrs": dics[0] | ||
| }] | ||
| ops = self.generate_op_config(ops_config) | ||
|
|
||
| program_config = ProgramConfig( | ||
| ops=ops, | ||
| weights={ | ||
| "alpha_weight": TensorConfig( | ||
| data_gen=partial(generate_alpha, dics, | ||
| dim1, dim2, dim3)) | ||
| }, | ||
| inputs={ | ||
| "input_data": TensorConfig( | ||
| data_gen=partial(generate_input, batch, | ||
| dim1, dim2, dim3)), | ||
| }, | ||
| outputs=["output_data"]) | ||
|
|
||
| yield program_config | ||
|
|
||
| def sample_predictor_configs( | ||
| self, program_config) -> (paddle_infer.Config, List[int], float): | ||
| def generate_dynamic_shape(attrs): | ||
| if self.dim1 == 0: | ||
| self.dynamic_shape.min_input_shape = {"input_data": [1], } | ||
| self.dynamic_shape.max_input_shape = {"input_data": [4], } | ||
| self.dynamic_shape.opt_input_shape = {"input_data": [2], } | ||
| else: | ||
| if self.dim2 == 0 and self.dim3 == 0: | ||
| self.dynamic_shape.min_input_shape = { | ||
| "input_data": [1, 1], | ||
| } | ||
| self.dynamic_shape.max_input_shape = { | ||
| "input_data": [4, 64], | ||
| } | ||
| self.dynamic_shape.opt_input_shape = { | ||
| "input_data": [2, 3], | ||
| } | ||
| elif self.dim2 != 0 and self.dim3 != 0: | ||
| self.dynamic_shape.min_input_shape = { | ||
| "input_data": [1, 1, 1, 1], | ||
| } | ||
| self.dynamic_shape.max_input_shape = { | ||
| "input_data": [4, 64, 128, 128], | ||
| } | ||
| self.dynamic_shape.opt_input_shape = { | ||
| "input_data": [2, 3, 16, 32], | ||
| } | ||
| elif self.dim3 == 0: | ||
| self.dynamic_shape.min_input_shape = { | ||
| "input_data": [1, 1, 1], | ||
| } | ||
| self.dynamic_shape.max_input_shape = { | ||
| "input_data": [4, 64, 256], | ||
| } | ||
| self.dynamic_shape.opt_input_shape = { | ||
| "input_data": [2, 3, 128], | ||
| } | ||
|
|
||
| def clear_dynamic_shape(): | ||
| self.dynamic_shape.max_input_shape = {} | ||
| self.dynamic_shape.min_input_shape = {} | ||
| self.dynamic_shape.opt_input_shape = {} | ||
|
|
||
| attrs = [ | ||
| program_config.ops[i].attrs | ||
| for i in range(len(program_config.ops)) | ||
| ] | ||
|
|
||
| # for static_shape | ||
| clear_dynamic_shape() | ||
| self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
| yield self.create_inference_config(), (1, 2), 1e-5 | ||
| self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
| yield self.create_inference_config(), (1, 2), 1e-5 | ||
|
|
||
| # for dynamic_shape | ||
| generate_dynamic_shape(attrs) | ||
| self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
| yield self.create_inference_config(), (1, 2), 1e-5 | ||
| self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
| yield self.create_inference_config(), (1, 2), 1e-5 | ||
|
|
||
| def add_skip_trt_case(self): | ||
| def teller1(program_config, predictor_config): | ||
| if self.dim1 == 0 and self.dim2 == 0 and self.dim3 == 0: | ||
| return True | ||
| return False | ||
|
|
||
| self.add_skip_case(teller1, SkipReasons.TRT_NOT_SUPPORT, | ||
| "Need to repair the case: the input's dim is 1.") | ||
|
|
||
| def teller2(program_config, predictor_config): | ||
| if (len(self.dynamic_shape.min_input_shape) == 0): | ||
| if self.dim1 != 0 and self.dim2 == 0 and self.dim3 == 0: | ||
| return True | ||
| return False | ||
|
|
||
| self.add_skip_case(teller2, SkipReasons.TRT_NOT_SUPPORT, | ||
| "Need to repair the case: the input's dim is 2.") | ||
|
|
||
| def test(self): | ||
| self.add_skip_trt_case() | ||
| self.run_test() | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
描述应该是,TRT本身不支持1维的tensor,这就不需要repair了。
如果没有别的地方要修改,就放到下个pr修改吧