Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions python/paddle/fluid/tests/unittests/test_adamw_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,5 +147,33 @@ def test_adamw_op_dygraph(self):
adam.clear_gradients()


class TestAdamWOpGroupWithLR(TestAdamWOp):
def test_adamw_op_dygraph(self):
paddle.disable_static()
value = np.arange(26).reshape(2, 13).astype("float32")
a = paddle.to_tensor(value)
linear_1 = paddle.nn.Linear(13, 5)
linear_2 = paddle.nn.Linear(5, 3)
adam = paddle.optimizer.AdamW(
learning_rate=paddle.optimizer.lr.PiecewiseDecay(
boundaries=[3, 6], values=[0.1, 0.2, 0.3]),
parameters=[{
'params': linear_1.parameters(),
'learning_rate': 0.1,
}, {
'params': linear_2.parameters(),
'weight_decay': 0.001,
}],
apply_decay_param_fun=lambda name: True,
weight_decay=0.01)

for _ in range(2):
out = linear_1(a)
out = linear_2(out)
out.backward()
adam.step()
adam.clear_gradients()


if __name__ == "__main__":
unittest.main()
7 changes: 3 additions & 4 deletions python/paddle/optimizer/adamw.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,10 +185,9 @@ def _append_decoupled_weight_decay(self, block, param_and_grad):
Raises:
Exception: The type of coeff and parameter is not consistent.
"""
if not isinstance(param_and_grad, dict):
param, grad = param_and_grad
else:
param, grad = self._update_param_group(param_and_grad)
if isinstance(param_and_grad, dict):
param_and_grad = self._update_param_group(param_and_grad)
param, grad = param_and_grad

if self._apply_decay_param_fun is not None \
and not self._apply_decay_param_fun(param.name):
Expand Down
4 changes: 2 additions & 2 deletions python/paddle/optimizer/optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,6 @@ def __init__(self,
self._param_device_map = dict()
self.clear_gradients = self.clear_grad
self._default_dict = {
'learning_rate': self._learning_rate,
'weight_decay': self.regularization,
'grad_clip': self._grad_clip
}
Expand Down Expand Up @@ -1190,7 +1189,8 @@ def _add_param_group(self, param_group):
else:
regularization = weight_decay
param.regularizer = regularization
param.optimize_attr['learning_rate'] = param_group['learning_rate']
param.optimize_attr['learning_rate'] = param_group.get(
'learning_rate', 1.)

self._param_groups.append(param_group)

Expand Down