Skip to content

Commit f868c40

Browse files
committed
add hard_sigmoid trt converter test cases
1 parent f72d52e commit f868c40

File tree

2 files changed

+144
-0
lines changed

2 files changed

+144
-0
lines changed

paddle/fluid/inference/tensorrt/op_teller.cc

Lines changed: 18 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1265,6 +1265,24 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
12651265
}
12661266
}
12671267

1268+
if (op_type == "hard_sigmoid") {
1269+
if (!with_dynamic_shape) {
1270+
auto* block = desc.Block();
1271+
if (block == nullptr) {
1272+
VLOG(3) << "The block is null.";
1273+
return false;
1274+
}
1275+
auto x_var_name = desc.Input("X")[0];
1276+
auto* x_var_desc = block->FindVar(x_var_name);
1277+
const auto x_shape = x_var_desc->GetShape();
1278+
if (x_shape.size() <= 2) {
1279+
VLOG(3) << "hard_sigmoid op does not support input's dim less than 3 "
1280+
"in tensorrt.";
1281+
return false;
1282+
}
1283+
}
1284+
}
1285+
12681286
if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
12691287
}
12701288

Lines changed: 126 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,126 @@
1+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
16+
from program_config import TensorConfig, ProgramConfig
17+
import numpy as np
18+
import paddle.inference as paddle_infer
19+
from functools import partial
20+
from typing import Optional, List, Callable, Dict, Any, Set
21+
22+
23+
class TrtConvertHardSigmoidTest_dim_2(TrtLayerAutoScanTest):
24+
def is_program_valid(self, program_config: ProgramConfig) -> bool:
25+
return True
26+
27+
def sample_program_configs(self):
28+
def generate_input(shape):
29+
return np.random.random(shape).astype(np.float32)
30+
31+
for batch in [1, 2, 4]:
32+
for shape in [[batch, 64], [batch, 32, 64], [batch, 64, 32, 128]]:
33+
self.input_dim = len(shape)
34+
for slope in [0.1, 0.5]:
35+
for offset in [0.2, 0.7]:
36+
dics = [{"slope": slope, "offset": offset}]
37+
ops_config = [{
38+
"op_type": "hard_sigmoid",
39+
"op_inputs": {
40+
"X": ["input_data"],
41+
},
42+
"op_outputs": {
43+
"Out": ["output_data"]
44+
},
45+
"op_attrs": dics[0]
46+
}]
47+
ops = self.generate_op_config(ops_config)
48+
49+
program_config = ProgramConfig(
50+
ops=ops,
51+
weights={},
52+
inputs={
53+
"input_data": TensorConfig(
54+
data_gen=partial(generate_input, shape))
55+
},
56+
outputs=["output_data"])
57+
58+
yield program_config
59+
60+
def sample_predictor_configs(
61+
self, program_config) -> (paddle_infer.Config, List[int], float):
62+
def generate_dynamic_shape(attrs):
63+
if self.input_dim == 2:
64+
self.dynamic_shape.min_input_shape = {"input_data": [1, 8]}
65+
self.dynamic_shape.max_input_shape = {"input_data": [64, 128]}
66+
self.dynamic_shape.opt_input_shape = {"input_data": [2, 16]}
67+
elif self.input_dim == 3:
68+
self.dynamic_shape.min_input_shape = {"input_data": [1, 8, 8]}
69+
self.dynamic_shape.max_input_shape = {
70+
"input_data": [64, 128, 256]
71+
}
72+
self.dynamic_shape.opt_input_shape = {"input_data": [2, 16, 64]}
73+
elif self.input_dim == 4:
74+
self.dynamic_shape.min_input_shape = {
75+
"input_data": [1, 8, 8, 4]
76+
}
77+
self.dynamic_shape.max_input_shape = {
78+
"input_data": [64, 128, 256, 512]
79+
}
80+
self.dynamic_shape.opt_input_shape = {
81+
"input_data": [2, 16, 64, 128]
82+
}
83+
84+
def clear_dynamic_shape():
85+
self.dynamic_shape.max_input_shape = {}
86+
self.dynamic_shape.min_input_shape = {}
87+
self.dynamic_shape.opt_input_shape = {}
88+
89+
attrs = [
90+
program_config.ops[i].attrs
91+
for i in range(len(program_config.ops))
92+
]
93+
94+
# for static_shape
95+
clear_dynamic_shape()
96+
self.trt_param.precision = paddle_infer.PrecisionType.Float32
97+
yield self.create_inference_config(), (1, 2), 1e-5
98+
self.trt_param.precision = paddle_infer.PrecisionType.Half
99+
yield self.create_inference_config(), (1, 2), 1e-5
100+
101+
# for dynamic_shape
102+
generate_dynamic_shape(attrs)
103+
self.trt_param.precision = paddle_infer.PrecisionType.Float32
104+
yield self.create_inference_config(), (1, 2), 1e-5
105+
self.trt_param.precision = paddle_infer.PrecisionType.Half
106+
yield self.create_inference_config(), (1, 2), 1e-5
107+
108+
def add_skip_trt_case(self):
109+
def teller(program_config, predictor_config):
110+
if len(self.dynamic_shape.
111+
min_input_shape) == 0 and self.input_dim == 2:
112+
return True
113+
return False
114+
115+
self.add_skip_case(
116+
teller, SkipReasons.TRT_NOT_SUPPORT,
117+
"Need to repair the case: the output of trt and GPU has diff when inputs' dims is 2 in static shape mode."
118+
)
119+
120+
def test(self):
121+
self.add_skip_trt_case()
122+
self.run_test()
123+
124+
125+
if __name__ == "__main__":
126+
unittest.main()

0 commit comments

Comments
 (0)