|
| 1 | +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "paddle/fluid/operators/masked_select_op.h" |
| 16 | +#include "paddle/fluid/operators/npu_op_runner.h" |
| 17 | + |
| 18 | +namespace paddle { |
| 19 | +namespace operators { |
| 20 | + |
| 21 | +template <typename T> |
| 22 | +class MaskedSelectedNPUKernel : public framework::OpKernel<T> { |
| 23 | + public: |
| 24 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 25 | + auto input = ctx.Input<framework::Tensor>("X"); |
| 26 | + auto mask = ctx.Input<framework::Tensor>("Mask"); |
| 27 | + auto out = ctx.Output<framework::Tensor>("Y"); |
| 28 | + |
| 29 | + auto input_dim = input->dims(); |
| 30 | + auto mask_dim = mask->dims(); |
| 31 | + PADDLE_ENFORCE_EQ( |
| 32 | + input_dim, mask_dim, |
| 33 | + platform::errors::InvalidArgument( |
| 34 | + "The dim size of input and mask in OP(masked_selected) " |
| 35 | + "must be equal, but got input dim:(%ld), mask dim: " |
| 36 | + "(%ld). Please check input " |
| 37 | + "value.", |
| 38 | + input_dim, mask_dim)); |
| 39 | + |
| 40 | + auto& dev_ctx = |
| 41 | + ctx.template device_context<paddle::platform::NPUDeviceContext>(); |
| 42 | + auto stream = dev_ctx.stream(); |
| 43 | + |
| 44 | + Tensor mask_int32, out_size; |
| 45 | + std::vector<int32_t> out_size_vec; |
| 46 | + mask_int32.mutable_data<int32_t>(mask->dims(), ctx.GetPlace()); |
| 47 | + out_size.mutable_data<int32_t>({1}, ctx.GetPlace()); |
| 48 | + { |
| 49 | + const auto& cast_runner = |
| 50 | + NpuOpRunner("Cast", {*mask}, {mask_int32}, |
| 51 | + {{"dst_type", static_cast<int32_t>(ConvertToNpuDtype( |
| 52 | + framework::proto::VarType::INT32))}}); |
| 53 | + cast_runner.Run(stream); |
| 54 | + |
| 55 | + mask_int32.Resize({mask_int32.numel()}); |
| 56 | + NpuOpRunner sum_runner; |
| 57 | + sum_runner.SetType("ReduceSum"); |
| 58 | + sum_runner.AddInput(mask_int32); |
| 59 | + sum_runner.AddInput(std::vector<int32_t>({0})); |
| 60 | + sum_runner.AddOutput(out_size); |
| 61 | + sum_runner.AddAttr("keep_dims", false); |
| 62 | + sum_runner.Run(stream); |
| 63 | + TensorToVector(out_size, dev_ctx, &out_size_vec); |
| 64 | + } |
| 65 | + |
| 66 | + out->Resize({out_size_vec[0]}); |
| 67 | + out->mutable_data<T>(ctx.GetPlace()); |
| 68 | + |
| 69 | + Tensor topkv2_out, indices; |
| 70 | + topkv2_out.mutable_data<int32_t>({out_size_vec[0]}, ctx.GetPlace()); |
| 71 | + indices.mutable_data<int32_t>({out_size_vec[0]}, ctx.GetPlace()); |
| 72 | + { |
| 73 | + NpuOpRunner topkv2_runner; |
| 74 | + topkv2_runner.SetType("TopKV2") |
| 75 | + .AddInput(mask_int32) |
| 76 | + .AddInput(out_size) |
| 77 | + .AddOutput(topkv2_out) |
| 78 | + .AddOutput(indices) |
| 79 | + .AddAttr("sorted", false) |
| 80 | + .AddAttr("dim", 0) |
| 81 | + .AddAttr("largest", true) |
| 82 | + .Run(stream); |
| 83 | + // TopKV2 may be unstable |
| 84 | + NpuOpRunner topkv2_runner2; |
| 85 | + topkv2_runner2.SetType("TopKV2") |
| 86 | + .AddInput(indices) |
| 87 | + .AddInput(out_size) |
| 88 | + .AddOutput(topkv2_out) |
| 89 | + .AddOutput(indices) |
| 90 | + .AddAttr("sorted", true) |
| 91 | + .AddAttr("dim", 0) |
| 92 | + .AddAttr("largest", false) |
| 93 | + .Run(stream); |
| 94 | + |
| 95 | + Tensor input_tmp; |
| 96 | + input_tmp.ShareDataWith(*input); |
| 97 | + input_tmp.Resize({input->numel()}); |
| 98 | + const auto& gather_runner = NpuOpRunner( |
| 99 | + "GatherV2D", {input_tmp, topkv2_out}, {*out}, {{"axis", 0}}); |
| 100 | + gather_runner.Run(stream); |
| 101 | + } |
| 102 | + } |
| 103 | +}; |
| 104 | + |
| 105 | +template <typename T> |
| 106 | +class MaskedSelectedGradNPUKernel : public framework::OpKernel<T> { |
| 107 | + public: |
| 108 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 109 | + auto mask = ctx.Input<framework::Tensor>("Mask"); |
| 110 | + auto y_grad = ctx.Input<framework::Tensor>(framework::GradVarName("Y")); |
| 111 | + auto x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X")); |
| 112 | + |
| 113 | + x_grad->mutable_data<T>(ctx.GetPlace()); |
| 114 | + |
| 115 | + auto& dev_ctx = |
| 116 | + ctx.template device_context<paddle::platform::NPUDeviceContext>(); |
| 117 | + auto stream = dev_ctx.stream(); |
| 118 | + |
| 119 | + Tensor mask_int32, out_size; |
| 120 | + std::vector<int32_t> out_size_vec; |
| 121 | + mask_int32.mutable_data<int32_t>(mask->dims(), ctx.GetPlace()); |
| 122 | + out_size.mutable_data<int32_t>({1}, ctx.GetPlace()); |
| 123 | + { |
| 124 | + const auto& cast_runner = |
| 125 | + NpuOpRunner("Cast", {*mask}, {mask_int32}, |
| 126 | + {{"dst_type", static_cast<int32_t>(ConvertToNpuDtype( |
| 127 | + framework::proto::VarType::INT32))}}); |
| 128 | + cast_runner.Run(stream); |
| 129 | + |
| 130 | + mask_int32.Resize({mask_int32.numel()}); |
| 131 | + NpuOpRunner sum_runner; |
| 132 | + sum_runner.SetType("ReduceSum"); |
| 133 | + sum_runner.AddInput(mask_int32); |
| 134 | + sum_runner.AddInput(std::vector<int32_t>({0})); |
| 135 | + sum_runner.AddOutput(out_size); |
| 136 | + sum_runner.AddAttr("keep_dims", false); |
| 137 | + sum_runner.Run(stream); |
| 138 | + TensorToVector(out_size, dev_ctx, &out_size_vec); |
| 139 | + } |
| 140 | + |
| 141 | + Tensor topkv2_out, indices; |
| 142 | + topkv2_out.mutable_data<int32_t>({out_size_vec[0]}, ctx.GetPlace()); |
| 143 | + indices.mutable_data<int32_t>({out_size_vec[0]}, ctx.GetPlace()); |
| 144 | + { |
| 145 | + NpuOpRunner topkv2_runner; |
| 146 | + topkv2_runner.SetType("TopKV2") |
| 147 | + .AddInput(mask_int32) |
| 148 | + .AddInput(out_size) |
| 149 | + .AddOutput(topkv2_out) |
| 150 | + .AddOutput(indices) |
| 151 | + .AddAttr("sorted", false) |
| 152 | + .AddAttr("dim", 0) |
| 153 | + .AddAttr("largest", true) |
| 154 | + .Run(stream); |
| 155 | + |
| 156 | + NpuOpRunner topkv2_runner2; |
| 157 | + topkv2_runner2.SetType("TopKV2") |
| 158 | + .AddInput(indices) |
| 159 | + .AddInput(out_size) |
| 160 | + .AddOutput(topkv2_out) |
| 161 | + .AddOutput(indices) |
| 162 | + .AddAttr("sorted", true) |
| 163 | + .AddAttr("dim", 0) |
| 164 | + .AddAttr("largest", false) |
| 165 | + .Run(stream); |
| 166 | + |
| 167 | + topkv2_out.Resize({out_size_vec[0], 1}); |
| 168 | + x_grad->Resize({x_grad->numel()}); |
| 169 | + NpuOpRunner scatter_runner; |
| 170 | + scatter_runner.SetType("ScatterNd"); |
| 171 | + scatter_runner.AddInput(topkv2_out); |
| 172 | + scatter_runner.AddInput(*y_grad); |
| 173 | + scatter_runner.AddInput( |
| 174 | + std::vector<int32_t>({static_cast<int32_t>(x_grad->numel())})); |
| 175 | + scatter_runner.AddOutput(*x_grad); |
| 176 | + scatter_runner.Run(stream); |
| 177 | + x_grad->Resize(mask->dims()); |
| 178 | + } |
| 179 | + } |
| 180 | +}; |
| 181 | +} // namespace operators |
| 182 | +} // namespace paddle |
| 183 | + |
| 184 | +namespace ops = paddle::operators; |
| 185 | +namespace plat = paddle::platform; |
| 186 | +REGISTER_OP_NPU_KERNEL(masked_select, |
| 187 | + ops::MaskedSelectedNPUKernel<plat::float16>, |
| 188 | + ops::MaskedSelectedNPUKernel<float>, |
| 189 | + ops::MaskedSelectedNPUKernel<int>, |
| 190 | + ops::MaskedSelectedNPUKernel<int64_t>); |
| 191 | +REGISTER_OP_NPU_KERNEL(masked_select_grad, |
| 192 | + ops::MaskedSelectedGradNPUKernel<plat::float16>, |
| 193 | + ops::MaskedSelectedGradNPUKernel<float>, |
| 194 | + ops::MaskedSelectedGradNPUKernel<int>, |
| 195 | + ops::MaskedSelectedGradNPUKernel<int64_t>); |
0 commit comments