|
| 1 | +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include "paddle/fluid/operators/detection_map_op.h" |
| 16 | + |
| 17 | +namespace paddle { |
| 18 | +namespace operators { |
| 19 | + |
| 20 | +using Tensor = framework::Tensor; |
| 21 | + |
| 22 | +class DetectionMAPOp : public framework::OperatorWithKernel { |
| 23 | + public: |
| 24 | + using framework::OperatorWithKernel::OperatorWithKernel; |
| 25 | + |
| 26 | + void InferShape(framework::InferShapeContext* ctx) const override { |
| 27 | + PADDLE_ENFORCE(ctx->HasInput("DetectRes"), |
| 28 | + "Input(DetectRes) of DetectionMAPOp should not be null."); |
| 29 | + PADDLE_ENFORCE(ctx->HasInput("Label"), |
| 30 | + "Input(Label) of DetectionMAPOp should not be null."); |
| 31 | + PADDLE_ENFORCE( |
| 32 | + ctx->HasOutput("AccumPosCount"), |
| 33 | + "Output(AccumPosCount) of DetectionMAPOp should not be null."); |
| 34 | + PADDLE_ENFORCE( |
| 35 | + ctx->HasOutput("AccumTruePos"), |
| 36 | + "Output(AccumTruePos) of DetectionMAPOp should not be null."); |
| 37 | + PADDLE_ENFORCE( |
| 38 | + ctx->HasOutput("AccumFalsePos"), |
| 39 | + "Output(AccumFalsePos) of DetectionMAPOp should not be null."); |
| 40 | + PADDLE_ENFORCE(ctx->HasOutput("MAP"), |
| 41 | + "Output(MAP) of DetectionMAPOp should not be null."); |
| 42 | + |
| 43 | + auto det_dims = ctx->GetInputDim("DetectRes"); |
| 44 | + PADDLE_ENFORCE_EQ(det_dims.size(), 2UL, |
| 45 | + "The rank of Input(DetectRes) must be 2, " |
| 46 | + "the shape is [N, 6]."); |
| 47 | + PADDLE_ENFORCE_EQ(det_dims[1], 6UL, |
| 48 | + "The shape is of Input(DetectRes) [N, 6]."); |
| 49 | + auto label_dims = ctx->GetInputDim("Label"); |
| 50 | + PADDLE_ENFORCE_EQ(label_dims.size(), 2UL, |
| 51 | + "The rank of Input(Label) must be 2, " |
| 52 | + "the shape is [N, 6]."); |
| 53 | + PADDLE_ENFORCE_EQ(label_dims[1], 6UL, |
| 54 | + "The shape is of Input(Label) [N, 6]."); |
| 55 | + |
| 56 | + if (ctx->HasInput("PosCount")) { |
| 57 | + PADDLE_ENFORCE(ctx->HasInput("TruePos"), |
| 58 | + "Input(TruePos) of DetectionMAPOp should not be null when " |
| 59 | + "Input(TruePos) is not null."); |
| 60 | + PADDLE_ENFORCE( |
| 61 | + ctx->HasInput("FalsePos"), |
| 62 | + "Input(FalsePos) of DetectionMAPOp should not be null when " |
| 63 | + "Input(FalsePos) is not null."); |
| 64 | + } |
| 65 | + |
| 66 | + ctx->SetOutputDim("MAP", framework::make_ddim({1})); |
| 67 | + } |
| 68 | + |
| 69 | + protected: |
| 70 | + framework::OpKernelType GetExpectedKernelType( |
| 71 | + const framework::ExecutionContext& ctx) const override { |
| 72 | + return framework::OpKernelType( |
| 73 | + framework::ToDataType( |
| 74 | + ctx.Input<framework::Tensor>("DetectRes")->type()), |
| 75 | + ctx.device_context()); |
| 76 | + } |
| 77 | +}; |
| 78 | + |
| 79 | +class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker { |
| 80 | + public: |
| 81 | + DetectionMAPOpMaker(OpProto* proto, OpAttrChecker* op_checker) |
| 82 | + : OpProtoAndCheckerMaker(proto, op_checker) { |
| 83 | + AddInput("DetectRes", |
| 84 | + "(LoDTensor) A 2-D LoDTensor with shape [M, 6] represents the " |
| 85 | + "detections. Each row has 6 values: " |
| 86 | + "[label, confidence, xmin, ymin, xmax, ymax], M is the total " |
| 87 | + "number of detect results in this mini-batch. For each instance, " |
| 88 | + "the offsets in first dimension are called LoD, the number of " |
| 89 | + "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is " |
| 90 | + "no detected data."); |
| 91 | + AddInput("Label", |
| 92 | + "(LoDTensor) A 2-D LoDTensor with shape[N, 6] represents the" |
| 93 | + "Labeled ground-truth data. Each row has 6 values: " |
| 94 | + "[label, is_difficult, xmin, ymin, xmax, ymax], N is the total " |
| 95 | + "number of ground-truth data in this mini-batch. For each " |
| 96 | + "instance, the offsets in first dimension are called LoD, " |
| 97 | + "the number of offset is N + 1, if LoD[i + 1] - LoD[i] == 0, " |
| 98 | + "means there is no ground-truth data."); |
| 99 | + AddInput("PosCount", |
| 100 | + "(Tensor) A tensor with shape [Ncls, 1], store the " |
| 101 | + "input positive example count of each class, Ncls is the count of " |
| 102 | + "input classification. " |
| 103 | + "This input is used to pass the AccumPosCount generated by the " |
| 104 | + "previous mini-batch when the multi mini-batches cumulative " |
| 105 | + "calculation carried out. " |
| 106 | + "When the input(PosCount) is empty, the cumulative " |
| 107 | + "calculation is not carried out, and only the results of the " |
| 108 | + "current mini-batch are calculated.") |
| 109 | + .AsDispensable(); |
| 110 | + AddInput("TruePos", |
| 111 | + "(LoDTensor) A 2-D LoDTensor with shape [Ntp, 2], store the " |
| 112 | + "input true positive example of each class." |
| 113 | + "This input is used to pass the AccumTruePos generated by the " |
| 114 | + "previous mini-batch when the multi mini-batches cumulative " |
| 115 | + "calculation carried out. ") |
| 116 | + .AsDispensable(); |
| 117 | + AddInput("FalsePos", |
| 118 | + "(LoDTensor) A 2-D LoDTensor with shape [Nfp, 2], store the " |
| 119 | + "input false positive example of each class." |
| 120 | + "This input is used to pass the AccumFalsePos generated by the " |
| 121 | + "previous mini-batch when the multi mini-batches cumulative " |
| 122 | + "calculation carried out. ") |
| 123 | + .AsDispensable(); |
| 124 | + AddOutput("AccumPosCount", |
| 125 | + "(Tensor) A tensor with shape [Ncls, 1], store the " |
| 126 | + "positive example count of each class. It combines the input " |
| 127 | + "input(PosCount) and the positive example count computed from " |
| 128 | + "input(Detection) and input(Label)."); |
| 129 | + AddOutput("AccumTruePos", |
| 130 | + "(LoDTensor) A LoDTensor with shape [Ntp', 2], store the " |
| 131 | + "true positive example of each class. It combines the " |
| 132 | + "input(TruePos) and the true positive examples computed from " |
| 133 | + "input(Detection) and input(Label)."); |
| 134 | + AddOutput("AccumFalsePos", |
| 135 | + "(LoDTensor) A LoDTensor with shape [Nfp', 2], store the " |
| 136 | + "false positive example of each class. It combines the " |
| 137 | + "input(FalsePos) and the false positive examples computed from " |
| 138 | + "input(Detection) and input(Label)."); |
| 139 | + AddOutput("MAP", |
| 140 | + "(Tensor) A tensor with shape [1], store the mAP evaluate " |
| 141 | + "result of the detection."); |
| 142 | + |
| 143 | + AddAttr<float>( |
| 144 | + "overlap_threshold", |
| 145 | + "(float) " |
| 146 | + "The lower bound jaccard overlap threshold of detection output and " |
| 147 | + "ground-truth data.") |
| 148 | + .SetDefault(.3f); |
| 149 | + AddAttr<bool>("evaluate_difficult", |
| 150 | + "(bool, default true) " |
| 151 | + "Switch to control whether the difficult data is evaluated.") |
| 152 | + .SetDefault(true); |
| 153 | + AddAttr<std::string>("ap_type", |
| 154 | + "(string, default 'integral') " |
| 155 | + "The AP algorithm type, 'integral' or '11point'.") |
| 156 | + .SetDefault("integral") |
| 157 | + .InEnum({"integral", "11point"}) |
| 158 | + .AddCustomChecker([](const std::string& ap_type) { |
| 159 | + PADDLE_ENFORCE_NE(GetAPType(ap_type), APType::kNone, |
| 160 | + "The ap_type should be 'integral' or '11point."); |
| 161 | + }); |
| 162 | + AddComment(R"DOC( |
| 163 | +Detection mAP evaluate operator. |
| 164 | +The general steps are as follows. First, calculate the true positive and |
| 165 | + false positive according to the input of detection and labels, then |
| 166 | + calculate the mAP evaluate value. |
| 167 | + Supporting '11 point' and 'integral' mAP algorithm. Please get more information |
| 168 | + from the following articles: |
| 169 | + https://sanchom.wordpress.com/tag/average-precision/ |
| 170 | + https://arxiv.org/abs/1512.02325 |
| 171 | +
|
| 172 | +)DOC"); |
| 173 | + } |
| 174 | +}; |
| 175 | + |
| 176 | +} // namespace operators |
| 177 | +} // namespace paddle |
| 178 | + |
| 179 | +namespace ops = paddle::operators; |
| 180 | +REGISTER_OP_WITHOUT_GRADIENT(detection_map, ops::DetectionMAPOp, |
| 181 | + ops::DetectionMAPOpMaker); |
| 182 | +REGISTER_OP_CPU_KERNEL( |
| 183 | + detection_map, ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, float>, |
| 184 | + ops::DetectionMAPOpKernel<paddle::platform::CPUPlace, double>); |
0 commit comments