|
| 1 | +/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. */ |
| 14 | + |
| 15 | +#include <memory> |
| 16 | +#include <string> |
| 17 | + |
| 18 | +#include "paddle/fluid/operators/mul_op.h" |
| 19 | +#include "paddle/fluid/operators/npu_op_runner.h" |
| 20 | + |
| 21 | +namespace paddle { |
| 22 | +namespace operators { |
| 23 | + |
| 24 | +template <typename DeviceContext, typename T> |
| 25 | +class MulNPUKernel : public framework::OpKernel<T> { |
| 26 | + public: |
| 27 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 28 | + auto* x = ctx.Input<framework::Tensor>("X"); |
| 29 | + auto* y = ctx.Input<framework::Tensor>("Y"); |
| 30 | + auto* out = ctx.Output<framework::Tensor>("Out"); |
| 31 | + int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); |
| 32 | + int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); |
| 33 | + auto stream = |
| 34 | + ctx.template device_context<paddle::platform::NPUDeviceContext>() |
| 35 | + .stream(); |
| 36 | + if (x_num_col_dims == 1 && y_num_col_dims == 1) { |
| 37 | + if (x->dims().size() == 2 && y->dims().size() == 2) { |
| 38 | + out->mutable_data<T>(ctx.GetPlace()); |
| 39 | + auto runner = |
| 40 | + NpuOpRunner("MatMul", {*x, *y}, {*out}, |
| 41 | + {{"transpose_x1", false}, {"transpose_x2", false}}); |
| 42 | + |
| 43 | + runner.Run(stream); |
| 44 | + } else if (x->dims().size() == 3 && y->dims().size() == 2) { |
| 45 | + // reshape |
| 46 | + Tensor tmp_x(x->type()); |
| 47 | + int64_t sec_dim = x->dims()[1] * x->dims()[2]; |
| 48 | + int64_t first_dim = x->dims()[0]; |
| 49 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 50 | + tmp_x.mutable_data<T>(ctx.GetPlace()); |
| 51 | + framework::TensorCopy( |
| 52 | + *x, ctx.GetPlace(), |
| 53 | + ctx.template device_context<platform::DeviceContext>(), &tmp_x); |
| 54 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 55 | + out->mutable_data<T>(ctx.GetPlace()); |
| 56 | + // matmul |
| 57 | + auto runner = |
| 58 | + NpuOpRunner("MatMul", {tmp_x, *y}, {*out}, |
| 59 | + {{"transpose_x1", false}, {"transpose_x2", false}}); |
| 60 | + runner.Run(stream); |
| 61 | + } else { |
| 62 | + PADDLE_THROW(platform::errors::InvalidArgument("not suppert dims")); |
| 63 | + } |
| 64 | + // to do other |
| 65 | + } else if (x->dims().size() == 3 && y->dims().size() == 2) { |
| 66 | + // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] |
| 67 | + PADDLE_ENFORCE_EQ(x_num_col_dims, 2, |
| 68 | + platform::errors::InvalidArgument( |
| 69 | + "now only support x_num_col_dims == 2: but got %d", |
| 70 | + x_num_col_dims)); |
| 71 | + // flatten => x.shape=[6, 4] |
| 72 | + Tensor tmp_x(x->type()); |
| 73 | + int64_t first_dim = x->dims()[0] * x->dims()[1]; |
| 74 | + int64_t sec_dim = x->dims()[2]; |
| 75 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 76 | + tmp_x.mutable_data<T>(ctx.GetPlace()); |
| 77 | + framework::TensorCopy( |
| 78 | + *x, ctx.GetPlace(), |
| 79 | + ctx.template device_context<platform::DeviceContext>(), &tmp_x); |
| 80 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 81 | + |
| 82 | + // matmul [6,4] , [4, 5] => [6, 5] |
| 83 | + Tensor tmp_matmul(x->type()); |
| 84 | + tmp_matmul.Resize(framework::make_ddim({first_dim, y->dims()[1]})); |
| 85 | + tmp_matmul.mutable_data<T>(ctx.GetPlace()); |
| 86 | + |
| 87 | + auto runner_matmul = |
| 88 | + NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_matmul}, |
| 89 | + {{"transpose_x1", false}, {"transpose_x2", false}}); |
| 90 | + |
| 91 | + runner_matmul.Run(stream); |
| 92 | + // reshape [6, 5] => [2, 3, 5] |
| 93 | + (*out).Resize( |
| 94 | + framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); |
| 95 | + out->mutable_data(ctx.GetPlace(), x->type()); |
| 96 | + framework::TensorCopy( |
| 97 | + tmp_matmul, ctx.GetPlace(), |
| 98 | + ctx.template device_context<platform::DeviceContext>(), out); |
| 99 | + (*out).Resize( |
| 100 | + framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); |
| 101 | + } |
| 102 | + } |
| 103 | +}; |
| 104 | + |
| 105 | +template <typename DeviceContext, typename T> |
| 106 | +class MulGradNPUKernel : public framework::OpKernel<T> { |
| 107 | + public: |
| 108 | + void Compute(const framework::ExecutionContext& ctx) const override { |
| 109 | + auto* x = ctx.Input<framework::Tensor>("X"); |
| 110 | + auto* y = ctx.Input<framework::Tensor>("Y"); |
| 111 | + auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); |
| 112 | + auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); |
| 113 | + auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); |
| 114 | + int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); |
| 115 | + int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); |
| 116 | + auto stream = |
| 117 | + ctx.template device_context<paddle::platform::NPUDeviceContext>() |
| 118 | + .stream(); |
| 119 | + if (x_num_col_dims == 1 && y_num_col_dims == 1) { |
| 120 | + if (x->dims().size() == 2 && y->dims().size() == 2) { |
| 121 | + if (dx) { |
| 122 | + dx->mutable_data<T>(ctx.GetPlace()); |
| 123 | + auto runner_dx = |
| 124 | + NpuOpRunner("MatMul", {*dout, *y}, {*dx}, |
| 125 | + {{"transpose_x1", false}, {"transpose_x2", true}}); |
| 126 | + |
| 127 | + runner_dx.Run(stream); |
| 128 | + } |
| 129 | + |
| 130 | + if (dy) { |
| 131 | + dy->mutable_data<T>(ctx.GetPlace()); |
| 132 | + auto runner_dy = |
| 133 | + NpuOpRunner("MatMul", {*x, *dout}, {*dy}, |
| 134 | + {{"transpose_x1", true}, {"transpose_x2", false}}); |
| 135 | + |
| 136 | + runner_dy.Run(stream); |
| 137 | + } |
| 138 | + } else if (x->dims().size() == 3 && y->dims().size() == 2) { |
| 139 | + // flatten => x.shape=[6, 4] |
| 140 | + // matmul |
| 141 | + if (dx) { |
| 142 | + // matmul [2, 5] * [12, 5] => [2, 12] |
| 143 | + Tensor tmp_matmul(y->type()); |
| 144 | + tmp_matmul.Resize( |
| 145 | + framework::make_ddim({dout->dims()[0], y->dims()[0]})); |
| 146 | + tmp_matmul.mutable_data<T>(ctx.GetPlace()); |
| 147 | + auto runner_matmul = |
| 148 | + NpuOpRunner("MatMul", {*dout, *y}, {tmp_matmul}, |
| 149 | + {{"transpose_x1", false}, {"transpose_x2", true}}); |
| 150 | + runner_matmul.Run(stream); |
| 151 | + // reshape [2, 12] => [2, 3, 4] |
| 152 | + dx->mutable_data(ctx.GetPlace(), x->type()); |
| 153 | + framework::TensorCopy( |
| 154 | + tmp_matmul, ctx.GetPlace(), |
| 155 | + ctx.template device_context<platform::DeviceContext>(), dx); |
| 156 | + } |
| 157 | + |
| 158 | + if (dy) { |
| 159 | + // flatten |
| 160 | + Tensor tmp_x(x->type()); |
| 161 | + int64_t sec_dim = x->dims()[1] * x->dims()[2]; |
| 162 | + int64_t first_dim = x->dims()[0]; |
| 163 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 164 | + tmp_x.mutable_data<T>(ctx.GetPlace()); |
| 165 | + framework::TensorCopy( |
| 166 | + *x, ctx.GetPlace(), |
| 167 | + ctx.template device_context<platform::DeviceContext>(), &tmp_x); |
| 168 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 169 | + dy->mutable_data<T>(ctx.GetPlace()); |
| 170 | + auto runner_dy = |
| 171 | + NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy}, |
| 172 | + {{"transpose_x1", true}, {"transpose_x2", false}}); |
| 173 | + |
| 174 | + runner_dy.Run(stream); |
| 175 | + } |
| 176 | + } |
| 177 | + } else if (x->dims().size() == 3 && y->dims().size() == 2) { |
| 178 | + // for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] |
| 179 | + PADDLE_ENFORCE_EQ(x_num_col_dims, 2, |
| 180 | + platform::errors::InvalidArgument( |
| 181 | + "now only support x_num_col_dims == 2: but got %d", |
| 182 | + x_num_col_dims)); |
| 183 | + // tmp_dout both used by dx and dy |
| 184 | + Tensor tmp_dout(x->type()); |
| 185 | + int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1]; |
| 186 | + int64_t dout_sec_dim = dout->dims()[2]; |
| 187 | + tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); |
| 188 | + tmp_dout.mutable_data<T>(ctx.GetPlace()); |
| 189 | + framework::TensorCopy( |
| 190 | + *dout, ctx.GetPlace(), |
| 191 | + ctx.template device_context<platform::DeviceContext>(), &tmp_dout); |
| 192 | + tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); |
| 193 | + |
| 194 | + if (dx) { |
| 195 | + // tmp_dout * y [6,5] * [4,5] => [6, 4] |
| 196 | + Tensor tmp_matmul(y->type()); |
| 197 | + tmp_matmul.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]})); |
| 198 | + tmp_matmul.mutable_data<T>(ctx.GetPlace()); |
| 199 | + auto runner_matmul = |
| 200 | + NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_matmul}, |
| 201 | + {{"transpose_x1", false}, {"transpose_x2", true}}); |
| 202 | + runner_matmul.Run(stream); |
| 203 | + // reshape [6,4] => [2, 3, 4] |
| 204 | + dx->mutable_data(ctx.GetPlace(), x->type()); |
| 205 | + framework::TensorCopy( |
| 206 | + tmp_matmul, ctx.GetPlace(), |
| 207 | + ctx.template device_context<platform::DeviceContext>(), dx); |
| 208 | + } |
| 209 | + if (dy) { |
| 210 | + // flatten x.shape [2,3,4] => [6, 4] |
| 211 | + Tensor tmp_x(x->type()); |
| 212 | + int64_t first_dim = x->dims()[0] * x->dims()[1]; |
| 213 | + int64_t sec_dim = x->dims()[2]; |
| 214 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 215 | + tmp_x.mutable_data<T>(ctx.GetPlace()); |
| 216 | + framework::TensorCopy( |
| 217 | + *x, ctx.GetPlace(), |
| 218 | + ctx.template device_context<platform::DeviceContext>(), &tmp_x); |
| 219 | + tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); |
| 220 | + // mamtul [6,4] [6,5] =>[4,5] |
| 221 | + dy->mutable_data<T>(ctx.GetPlace()); |
| 222 | + auto runner_dy = |
| 223 | + NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy}, |
| 224 | + {{"transpose_x1", true}, {"transpose_x2", false}}); |
| 225 | + runner_dy.Run(stream); |
| 226 | + } |
| 227 | + } |
| 228 | + } |
| 229 | +}; |
| 230 | + |
| 231 | +} // namespace operators |
| 232 | +} // namespace paddle |
| 233 | + |
| 234 | +namespace ops = paddle::operators; |
| 235 | + |
| 236 | +REGISTER_OP_NPU_KERNEL( |
| 237 | + mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>, |
| 238 | + ops::MulNPUKernel<paddle::platform::NPUDeviceContext, |
| 239 | + paddle::platform::float16>); |
| 240 | +REGISTER_OP_NPU_KERNEL( |
| 241 | + mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>, |
| 242 | + ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, |
| 243 | + paddle::platform::float16>); |
0 commit comments