Skip to content

Commit 787209f

Browse files
authored
add group_norm trt converter test case (#35524)
* add group_norm trt converter test case * update group_norm trt converter test case
1 parent 03026ce commit 787209f

File tree

1 file changed

+134
-0
lines changed

1 file changed

+134
-0
lines changed
Lines changed: 134 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,134 @@
1+
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2+
#
3+
# Licensed under the Apache License, Version 2.0 (the "License");
4+
# you may not use this file except in compliance with the License.
5+
# You may obtain a copy of the License at
6+
#
7+
# http://www.apache.org/licenses/LICENSE-2.0
8+
#
9+
# Unless required by applicable law or agreed to in writing, software
10+
# distributed under the License is distributed on an "AS IS" BASIS,
11+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12+
# See the License for the specific language governing permissions and
13+
# limitations under the License.
14+
15+
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons
16+
from program_config import TensorConfig, ProgramConfig
17+
import numpy as np
18+
import paddle.inference as paddle_infer
19+
from functools import partial
20+
from typing import Optional, List, Callable, Dict, Any, Set
21+
22+
23+
class TrtConvertGroupNormTest(TrtLayerAutoScanTest):
24+
def is_program_valid(self, program_config: ProgramConfig) -> bool:
25+
return True
26+
27+
def sample_program_configs(self):
28+
def generate_input(attrs: List[Dict[str, Any]], batch):
29+
if attrs[0]['data_layout'] == 'NCHW':
30+
return np.random.random([batch, 32, 64, 64]).astype(np.float32)
31+
else:
32+
return np.random.random([batch, 64, 64, 32]).astype(np.float32)
33+
34+
def generate_scale():
35+
return np.random.randn(32).astype(np.float32)
36+
37+
def generate_bias():
38+
return np.random.randn(32).astype(np.float32)
39+
40+
for batch in [1, 2, 4]:
41+
for group in [1, 4, 32]:
42+
for epsilon in [0.1, 0.7]:
43+
for data_layout in ['NCHW', 'NHWC']:
44+
for i in [0, 1]:
45+
dics = [{
46+
"epsilon": epsilon,
47+
"groups": group,
48+
"data_layout": data_layout
49+
}, {
50+
"groups": group,
51+
"data_layout": data_layout
52+
}]
53+
ops_config = [{
54+
"op_type": "group_norm",
55+
"op_inputs": {
56+
"X": ["input_data"],
57+
"Scale": ["scale_weight"],
58+
"Bias": ["bias_weight"]
59+
},
60+
"op_outputs": {
61+
"Y": ["y_output"],
62+
"Mean": ["mean_output"],
63+
"Variance": ["variance_output"]
64+
},
65+
"op_attrs": dics[i]
66+
}]
67+
ops = self.generate_op_config(ops_config)
68+
69+
program_config = ProgramConfig(
70+
ops=ops,
71+
weights={
72+
"scale_weight": TensorConfig(
73+
data_gen=partial(generate_scale)),
74+
"bias_weight": TensorConfig(
75+
data_gen=partial(generate_bias))
76+
},
77+
inputs={
78+
"input_data": TensorConfig(data_gen=partial(
79+
generate_input, dics, batch))
80+
},
81+
outputs=["y_output"])
82+
83+
yield program_config
84+
85+
def sample_predictor_configs(
86+
self, program_config) -> (paddle_infer.Config, List[int], float):
87+
def generate_dynamic_shape(attrs):
88+
self.dynamic_shape.min_input_shape = {"input_data": [1, 16, 32, 32]}
89+
self.dynamic_shape.max_input_shape = {
90+
"input_data": [4, 64, 128, 64]
91+
}
92+
self.dynamic_shape.opt_input_shape = {"input_data": [2, 32, 64, 64]}
93+
94+
def clear_dynamic_shape():
95+
self.dynamic_shape.max_input_shape = {}
96+
self.dynamic_shape.min_input_shape = {}
97+
self.dynamic_shape.opt_input_shape = {}
98+
99+
def generate_trt_nodes_num(attrs, dynamic_shape):
100+
if len(attrs[0]) == 3:
101+
if dynamic_shape:
102+
return 1, 2
103+
else:
104+
return 0, 3
105+
else:
106+
return 0, 3
107+
108+
attrs = [
109+
program_config.ops[i].attrs
110+
for i in range(len(program_config.ops))
111+
]
112+
113+
# for static_shape
114+
clear_dynamic_shape()
115+
self.trt_param.precision = paddle_infer.PrecisionType.Float32
116+
yield self.create_inference_config(), generate_trt_nodes_num(
117+
attrs, False), 1e-5
118+
self.trt_param.precision = paddle_infer.PrecisionType.Half
119+
yield self.create_inference_config(), generate_trt_nodes_num(
120+
attrs, False), 1e-5
121+
122+
# for dynamic_shape
123+
generate_dynamic_shape(attrs)
124+
# self.trt_param.precision = paddle_infer.PrecisionType.Float32
125+
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
126+
# self.trt_param.precision = paddle_infer.PrecisionType.Half
127+
# yield self.create_inference_config(), generate_trt_nodes_num(attrs, True), 1e-5
128+
129+
def test(self):
130+
self.run_test()
131+
132+
133+
if __name__ == "__main__":
134+
unittest.main()

0 commit comments

Comments
 (0)