|
| 1 | +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import unittest |
| 16 | +import paddle |
| 17 | +import os |
| 18 | + |
| 19 | +import numpy as np |
| 20 | +import paddle |
| 21 | +import paddle.static as static |
| 22 | +import paddle.distributed.fleet as fleet |
| 23 | +import paddle.nn as nn |
| 24 | +import paddle.nn.functional as F |
| 25 | + |
| 26 | +paddle.enable_static() |
| 27 | + |
| 28 | + |
| 29 | +class RNNEncoder(nn.Layer): |
| 30 | + def __init__(self, |
| 31 | + input_size, |
| 32 | + hidden_size, |
| 33 | + num_layers=1, |
| 34 | + direction="forward", |
| 35 | + dropout=0.0, |
| 36 | + pooling_type=None, |
| 37 | + **kwargs): |
| 38 | + super().__init__() |
| 39 | + self._input_size = input_size |
| 40 | + self._hidden_size = hidden_size |
| 41 | + self._direction = direction |
| 42 | + self._pooling_type = pooling_type |
| 43 | + |
| 44 | + self.rnn_layer = nn.SimpleRNN( |
| 45 | + input_size=input_size, |
| 46 | + hidden_size=hidden_size, |
| 47 | + num_layers=num_layers, |
| 48 | + direction=direction, |
| 49 | + dropout=dropout, |
| 50 | + **kwargs) |
| 51 | + |
| 52 | + def get_input_dim(self): |
| 53 | + return self._input_size |
| 54 | + |
| 55 | + def get_output_dim(self): |
| 56 | + if self._direction == "bidirect": |
| 57 | + return self._hidden_size * 2 |
| 58 | + else: |
| 59 | + return self._hidden_size |
| 60 | + |
| 61 | + def forward(self, inputs, sequence_length): |
| 62 | + encoded_text, last_hidden = self.rnn_layer( |
| 63 | + inputs, sequence_length=sequence_length) |
| 64 | + output = paddle.max(encoded_text, axis=1) |
| 65 | + return output |
| 66 | + |
| 67 | + |
| 68 | +class RNNModel(nn.Layer): |
| 69 | + def __init__(self, |
| 70 | + vocab_size, |
| 71 | + num_classes, |
| 72 | + emb_dim=128, |
| 73 | + padding_idx=0, |
| 74 | + rnn_hidden_size=198, |
| 75 | + direction='forward', |
| 76 | + rnn_layers=1, |
| 77 | + dropout_rate=0.0, |
| 78 | + pooling_type=None, |
| 79 | + fc_hidden_size=96): |
| 80 | + super().__init__() |
| 81 | + self.embedder = nn.Embedding( |
| 82 | + num_embeddings=vocab_size, |
| 83 | + embedding_dim=emb_dim, |
| 84 | + padding_idx=padding_idx) |
| 85 | + self.rnn_encoder = RNNEncoder( |
| 86 | + emb_dim, |
| 87 | + rnn_hidden_size, |
| 88 | + num_layers=rnn_layers, |
| 89 | + direction=direction, |
| 90 | + dropout=dropout_rate, |
| 91 | + pooling_type=pooling_type) |
| 92 | + self.fc = nn.Linear(self.rnn_encoder.get_output_dim(), fc_hidden_size) |
| 93 | + self.output_layer = nn.Linear(fc_hidden_size, num_classes) |
| 94 | + |
| 95 | + def forward(self, text, seq_len): |
| 96 | + embedded_text = self.embedder(text) |
| 97 | + text_repr = self.rnn_encoder(embedded_text, sequence_length=seq_len) |
| 98 | + fc_out = paddle.tanh(self.fc(text_repr)) |
| 99 | + logits = self.output_layer(fc_out) |
| 100 | + return logits |
| 101 | + |
| 102 | + |
| 103 | +def rnn_pretrain_forward(train_program, start_program, topo=None): |
| 104 | + with static.program_guard(train_program, |
| 105 | + start_program), paddle.utils.unique_name.guard(): |
| 106 | + batch_size = 1 |
| 107 | + tokens = static.data( |
| 108 | + name="tokens", shape=[batch_size, -1], dtype="int64") |
| 109 | + seq_len = static.data(name="ids", shape=[batch_size], dtype="int64") |
| 110 | + labels = static.data(name="labels", shape=[batch_size], dtype="int64") |
| 111 | + data_holders = [tokens, seq_len, labels] |
| 112 | + vocab_size = 10 |
| 113 | + num_classes = 2 |
| 114 | + pad_token_id = 0 |
| 115 | + model = RNNModel( |
| 116 | + vocab_size, |
| 117 | + num_classes, |
| 118 | + direction='forward', |
| 119 | + padding_idx=pad_token_id, |
| 120 | + pooling_type='max') |
| 121 | + |
| 122 | + optimizer = paddle.optimizer.Adam( |
| 123 | + parameters=model.parameters(), learning_rate=0.001) |
| 124 | + criterion = paddle.nn.CrossEntropyLoss() |
| 125 | + preds = model(tokens, seq_len) |
| 126 | + loss = criterion(preds, labels) |
| 127 | + |
| 128 | + return train_program, start_program, loss, optimizer, data_holders |
| 129 | + |
| 130 | + |
| 131 | +class TestFleetMetaOptimizer(unittest.TestCase): |
| 132 | + def setUp(self): |
| 133 | + os.environ["PADDLE_TRAINER_ID"] = "1" |
| 134 | + os.environ[ |
| 135 | + "PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001,127.0.0.1:36002" |
| 136 | + |
| 137 | + def test_rnn_raw_optimizer(self): |
| 138 | + import paddle.distributed.fleet as fleet |
| 139 | + import paddle.distributed.fleet.base.role_maker as role_maker |
| 140 | + role = role_maker.PaddleCloudRoleMaker(is_collective=True) |
| 141 | + fleet.init(role) |
| 142 | + train_program = static.Program() |
| 143 | + start_program = static.Program() |
| 144 | + train_program, start_program, loss, optimizer, data_holders = \ |
| 145 | + rnn_pretrain_forward(train_program, start_program) |
| 146 | + with paddle.static.program_guard( |
| 147 | + train_program, start_program), paddle.utils.unique_name.guard(): |
| 148 | + strategy = fleet.DistributedStrategy() |
| 149 | + strategy.without_graph_optimization = True |
| 150 | + strategy.fuse_all_reduce_ops = True |
| 151 | + fleet.init(is_collective=True, strategy=strategy) |
| 152 | + optimizer = fleet.distributed_optimizer(optimizer) |
| 153 | + optimizer.minimize(loss) |
| 154 | + |
| 155 | + |
| 156 | +if __name__ == "__main__": |
| 157 | + unittest.main() |
0 commit comments