Skip to content

Commit 48874e8

Browse files
author
liuhui29
committed
solve conflicts
1 parent 6864ea8 commit 48874e8

File tree

2 files changed

+7
-58
lines changed

2 files changed

+7
-58
lines changed

python/paddle/fluid/tests/unittests/test_pool1d_api.py

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -155,13 +155,8 @@ def check_avg_dygraph_padding_results(self, place):
155155

156156
self.assertTrue(np.allclose(result.numpy(), result_np))
157157

158-
<<<<<<< HEAD
159-
avg_pool1d_dg = paddle.nn.AvgPool1d(
160-
kernel_size=2, stride=None, padding=1, exclusive=True)
161-
=======
162158
avg_pool1d_dg = paddle.nn.AvgPool1D(
163-
kernel_size=2, stride=None, padding=1, count_include_pad=True)
164-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
159+
kernel_size=2, stride=None, padding=1, exclusive=True)
165160
result = avg_pool1d_dg(input)
166161
self.assertTrue(np.allclose(result.numpy(), result_np))
167162

python/paddle/nn/layer/pooling.py

Lines changed: 6 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -377,13 +377,8 @@ class MaxPool1D(layers.Layer):
377377
pool_out = MaxPool1D(data)
378378
# pool_out shape: [1, 3, 16]
379379
380-
<<<<<<< HEAD
381-
MaxPool1d = nn.MaxPool1d(kernel_size=2, stride=2, padding=0, return_mask=True)
382-
pool_out, indices = MaxPool1d(data)
383-
=======
384-
MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_indices=True)
380+
MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
385381
pool_out, indices = MaxPool1D(data)
386-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
387382
# pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
388383
389384
"""
@@ -478,15 +473,9 @@ class MaxPool2D(layers.Layer):
478473
output = MaxPool2D(input)
479474
# output.shape [1, 3, 16, 16]
480475
481-
<<<<<<< HEAD
482476
# for return_mask=True
483-
MaxPool2d = nn.MaxPool2d(kernel_size=2,stride=2, padding=0, return_mask=True)
484-
output, max_indices = MaxPool2d(input)
485-
=======
486-
# for return_indices=True
487-
MaxPool2D = nn.MaxPool2D(kernel_size=2,stride=2, padding=0, return_indices=True)
477+
MaxPool2D = nn.MaxPool2D(kernel_size=2,stride=2, padding=0, return_mask=True)
488478
output, max_indices = MaxPool2D(input)
489-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
490479
# output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
491480
"""
492481

@@ -575,15 +564,9 @@ class MaxPool3D(layers.Layer):
575564
output = MaxPool3D(input)
576565
# output.shape [1, 2, 3, 16, 16]
577566
578-
<<<<<<< HEAD
579567
# for return_mask=True
580-
MaxPool3d = nn.MaxPool3d(kernel_size=2,stride=2, padding=0, return_mask=True)
581-
output, max_indices = MaxPool3d(input)
582-
=======
583-
# for return_indices=True
584-
MaxPool3D = nn.MaxPool3D(kernel_size=2,stride=2, padding=0, return_indices=True)
568+
MaxPool3D = nn.MaxPool3D(kernel_size=2,stride=2, padding=0, return_mask=True)
585569
output, max_indices = MaxPool3D(input)
586-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
587570
# output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
588571
"""
589572

@@ -915,26 +898,15 @@ class AdaptiveMaxPool1D(layers.Layer):
915898
pool_out = AdaptiveMaxPool1D(data)
916899
# pool_out shape: [1, 3, 16]
917900
918-
<<<<<<< HEAD
919901
# for return_mask = true
920-
AdaptiveMaxPool1d = nn.AdaptiveMaxPool1d(output_size=16, return_mask=True)
921-
pool_out, indices = AdaptiveMaxPool1d(data)
922-
=======
923-
# for return_indices = true
924-
AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_indices=True)
902+
AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
925903
pool_out, indices = AdaptiveMaxPool1D(data)
926-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
927904
# pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
928905
929906
"""
930907

931-
<<<<<<< HEAD
932908
def __init__(self, output_size, return_mask=False, name=None):
933-
super(AdaptiveMaxPool1d, self).__init__()
934-
=======
935-
def __init__(self, output_size, return_indices=False, name=None):
936909
super(AdaptiveMaxPool1D, self).__init__()
937-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
938910
self.output_size = output_size
939911
self.return_mask = return_mask
940912
self.name = name
@@ -993,21 +965,12 @@ class AdaptiveMaxPool2D(layers.Layer):
993965
paddle.disable_static()
994966
input_data = np.random.rand(2, 3, 32, 32)
995967
x = paddle.to_tensor(input_data)
996-
<<<<<<< HEAD
997-
adaptive_max_pool = paddle.nn.AdaptiveMaxPool2d(output_size=3, return_mask=True)
968+
adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
998969
pool_out, indices = adaptive_max_pool(x = x)
999970
"""
1000971

1001972
def __init__(self, output_size, return_mask=False, name=None):
1002-
super(AdaptiveMaxPool2d, self).__init__()
1003-
=======
1004-
adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_indices=True)
1005-
pool_out, indices = adaptive_max_pool(x = x)
1006-
"""
1007-
1008-
def __init__(self, output_size, return_indices=False, name=None):
1009973
super(AdaptiveMaxPool2D, self).__init__()
1010-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
1011974
self._output_size = output_size
1012975
self._return_mask = return_mask
1013976
self._name = name
@@ -1077,23 +1040,14 @@ class AdaptiveMaxPool3D(layers.Layer):
10771040
pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
10781041
out = pool(x)
10791042
# out shape: [2, 3, 4, 4, 4]
1080-
<<<<<<< HEAD
1081-
pool = paddle.nn.AdaptiveMaxPool3d(output_size=3, return_mask=True)
1082-
=======
1083-
pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_indices=True)
1084-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
1043+
pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
10851044
out, indices = pool(x)
10861045
# out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
10871046
10881047
"""
10891048

1090-
<<<<<<< HEAD
10911049
def __init__(self, output_size, return_mask=False, name=None):
1092-
super(AdaptiveMaxPool3d, self).__init__()
1093-
=======
1094-
def __init__(self, output_size, return_indices=False, name=None):
10951050
super(AdaptiveMaxPool3D, self).__init__()
1096-
>>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
10971051
self._output_size = output_size
10981052
self._return_mask = return_mask
10991053
self._name = name

0 commit comments

Comments
 (0)