@@ -377,13 +377,8 @@ class MaxPool1D(layers.Layer):
377377 pool_out = MaxPool1D(data)
378378 # pool_out shape: [1, 3, 16]
379379
380- <<<<<<< HEAD
381- MaxPool1d = nn.MaxPool1d(kernel_size=2, stride=2, padding=0, return_mask=True)
382- pool_out, indices = MaxPool1d(data)
383- =======
384- MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_indices=True)
380+ MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_mask=True)
385381 pool_out, indices = MaxPool1D(data)
386- >>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
387382 # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
388383
389384 """
@@ -478,15 +473,9 @@ class MaxPool2D(layers.Layer):
478473 output = MaxPool2D(input)
479474 # output.shape [1, 3, 16, 16]
480475
481- <<<<<<< HEAD
482476 # for return_mask=True
483- MaxPool2d = nn.MaxPool2d(kernel_size=2,stride=2, padding=0, return_mask=True)
484- output, max_indices = MaxPool2d(input)
485- =======
486- # for return_indices=True
487- MaxPool2D = nn.MaxPool2D(kernel_size=2,stride=2, padding=0, return_indices=True)
477+ MaxPool2D = nn.MaxPool2D(kernel_size=2,stride=2, padding=0, return_mask=True)
488478 output, max_indices = MaxPool2D(input)
489- >>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
490479 # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
491480 """
492481
@@ -575,15 +564,9 @@ class MaxPool3D(layers.Layer):
575564 output = MaxPool3D(input)
576565 # output.shape [1, 2, 3, 16, 16]
577566
578- <<<<<<< HEAD
579567 # for return_mask=True
580- MaxPool3d = nn.MaxPool3d(kernel_size=2,stride=2, padding=0, return_mask=True)
581- output, max_indices = MaxPool3d(input)
582- =======
583- # for return_indices=True
584- MaxPool3D = nn.MaxPool3D(kernel_size=2,stride=2, padding=0, return_indices=True)
568+ MaxPool3D = nn.MaxPool3D(kernel_size=2,stride=2, padding=0, return_mask=True)
585569 output, max_indices = MaxPool3D(input)
586- >>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
587570 # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
588571 """
589572
@@ -915,26 +898,15 @@ class AdaptiveMaxPool1D(layers.Layer):
915898 pool_out = AdaptiveMaxPool1D(data)
916899 # pool_out shape: [1, 3, 16]
917900
918- <<<<<<< HEAD
919901 # for return_mask = true
920- AdaptiveMaxPool1d = nn.AdaptiveMaxPool1d(output_size=16, return_mask=True)
921- pool_out, indices = AdaptiveMaxPool1d(data)
922- =======
923- # for return_indices = true
924- AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_indices=True)
902+ AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_mask=True)
925903 pool_out, indices = AdaptiveMaxPool1D(data)
926- >>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
927904 # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]
928905
929906 """
930907
931- < << << << HEAD
932908 def __init__ (self , output_size , return_mask = False , name = None ):
933- super (AdaptiveMaxPool1d , self ).__init__ ()
934- == == == =
935- def __init__ (self , output_size , return_indices = False , name = None ):
936909 super (AdaptiveMaxPool1D , self ).__init__ ()
937- >> >> >> > 7 c1aa0d69dd21d7db98b1c46873f3a028e344e95
938910 self .output_size = output_size
939911 self .return_mask = return_mask
940912 self .name = name
@@ -993,21 +965,12 @@ class AdaptiveMaxPool2D(layers.Layer):
993965 paddle.disable_static()
994966 input_data = np.random.rand(2, 3, 32, 32)
995967 x = paddle.to_tensor(input_data)
996- <<<<<<< HEAD
997- adaptive_max_pool = paddle.nn.AdaptiveMaxPool2d(output_size=3, return_mask=True)
968+ adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
998969 pool_out, indices = adaptive_max_pool(x = x)
999970 """
1000971
1001972 def __init__ (self , output_size , return_mask = False , name = None ):
1002- super (AdaptiveMaxPool2d , self ).__init__ ()
1003- == == == =
1004- adaptive_max_pool = paddle .nn .AdaptiveMaxPool2D (output_size = 3 , return_indices = True )
1005- pool_out , indices = adaptive_max_pool (x = x )
1006- """
1007-
1008- def __init__(self, output_size, return_indices=False, name=None):
1009973 super (AdaptiveMaxPool2D , self ).__init__ ()
1010- >>>>>>> 7c1aa0d69dd21d7db98b1c46873f3a028e344e95
1011974 self ._output_size = output_size
1012975 self ._return_mask = return_mask
1013976 self ._name = name
@@ -1077,23 +1040,14 @@ class AdaptiveMaxPool3D(layers.Layer):
10771040 pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
10781041 out = pool(x)
10791042 # out shape: [2, 3, 4, 4, 4]
1080- << << << < HEAD
1081- pool = paddle .nn .AdaptiveMaxPool3d (output_size = 3 , return_mask = True )
1082- == == == =
1083- pool = paddle .nn .AdaptiveMaxPool3D (output_size = 3 , return_indices = True )
1084- >> >> >> > 7 c1aa0d69dd21d7db98b1c46873f3a028e344e95
1043+ pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
10851044 out, indices = pool(x)
10861045 # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
10871046
10881047 """
10891048
1090- << << << < HEAD
10911049 def __init__ (self , output_size , return_mask = False , name = None ):
1092- super (AdaptiveMaxPool3d , self ).__init__ ()
1093- == == == =
1094- def __init__ (self , output_size , return_indices = False , name = None ):
10951050 super (AdaptiveMaxPool3D , self ).__init__ ()
1096- >> >> >> > 7 c1aa0d69dd21d7db98b1c46873f3a028e344e95
10971051 self ._output_size = output_size
10981052 self ._return_mask = return_mask
10991053 self ._name = name
0 commit comments