Skip to content

Commit 442db6f

Browse files
author
zhaoyingli
committed
update gpuplace
1 parent 0114fd8 commit 442db6f

File tree

1 file changed

+41
-48
lines changed

1 file changed

+41
-48
lines changed

python/paddle/fluid/tests/unittests/test_adamw_op.py

Lines changed: 41 additions & 48 deletions
Original file line numberDiff line numberDiff line change
@@ -190,54 +190,47 @@ def test_adamw_op_dygraph(self):
190190

191191
def test_adamw_op(self):
192192
paddle.enable_static()
193-
places = [fluid.CPUPlace(), fluid.CUDAPlace(0)]
194-
for place in places:
195-
train_prog = fluid.Program()
196-
startup = fluid.Program()
197-
with fluid.program_guard(train_prog, startup):
198-
with fluid.unique_name.guard():
199-
x = fluid.data(name='x', shape=[None, 10], dtype='float32')
200-
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
201-
202-
fc1 = fluid.layers.fc(input=x, size=32, act=None)
203-
prediction = fluid.layers.fc(input=fc1, size=1, act=None)
204-
cost = fluid.layers.square_error_cost(
205-
input=prediction, label=y)
206-
avg_cost = fluid.layers.mean(cost)
207-
208-
simple_lr_fun = partial(
209-
simple_lr_setting, decay_rate=0.8, n_layers=2)
210-
211-
beta1 = fluid.layers.create_global_var(
212-
shape=[1],
213-
value=0.85,
214-
dtype='float32',
215-
persistable=True)
216-
beta2 = fluid.layers.create_global_var(
217-
shape=[1],
218-
value=0.95,
219-
dtype='float32',
220-
persistable=True)
221-
betas = [beta1, beta2]
222-
opt = paddle.optimizer.AdamW(
223-
learning_rate=1e-5,
224-
beta1=beta1,
225-
beta2=beta2,
226-
weight_decay=0.01,
227-
epsilon=1e-8,
228-
lr_ratio=simple_lr_fun)
229-
opt.minimize(avg_cost)
230-
231-
exe = fluid.Executor(place)
232-
exe.run(startup)
233-
for _ in range(2):
234-
inputs = np.random.random(size=[8, 10]).astype('float32')
235-
outputs = np.random.random(size=[8, 1]).astype('float32')
236-
rets = exe.run(train_prog,
237-
feed={"x": inputs,
238-
"y": outputs},
239-
fetch_list=[avg_cost])
240-
assert rets[0] is not None
193+
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
194+
else fluid.CPUPlace()
195+
train_prog = fluid.Program()
196+
startup = fluid.Program()
197+
with fluid.program_guard(train_prog, startup):
198+
with fluid.unique_name.guard():
199+
x = fluid.data(name='x', shape=[None, 10], dtype='float32')
200+
y = fluid.data(name='y', shape=[None, 1], dtype='float32')
201+
202+
fc1 = fluid.layers.fc(input=x, size=32, act=None)
203+
prediction = fluid.layers.fc(input=fc1, size=1, act=None)
204+
cost = fluid.layers.square_error_cost(input=prediction, label=y)
205+
avg_cost = fluid.layers.mean(cost)
206+
207+
simple_lr_fun = partial(
208+
simple_lr_setting, decay_rate=0.8, n_layers=2)
209+
210+
beta1 = fluid.layers.create_global_var(
211+
shape=[1], value=0.85, dtype='float32', persistable=True)
212+
beta2 = fluid.layers.create_global_var(
213+
shape=[1], value=0.95, dtype='float32', persistable=True)
214+
betas = [beta1, beta2]
215+
opt = paddle.optimizer.AdamW(
216+
learning_rate=1e-5,
217+
beta1=beta1,
218+
beta2=beta2,
219+
weight_decay=0.01,
220+
epsilon=1e-8,
221+
lr_ratio=simple_lr_fun)
222+
opt.minimize(avg_cost)
223+
224+
exe = fluid.Executor(place)
225+
exe.run(startup)
226+
for _ in range(2):
227+
inputs = np.random.random(size=[8, 10]).astype('float32')
228+
outputs = np.random.random(size=[8, 1]).astype('float32')
229+
rets = exe.run(train_prog,
230+
feed={"x": inputs,
231+
"y": outputs},
232+
fetch_list=[avg_cost])
233+
assert rets[0] is not None
241234

242235
paddle.disable_static()
243236

0 commit comments

Comments
 (0)