|
| 1 | +// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. |
| 2 | +// |
| 3 | +// Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +// you may not use this file except in compliance with the License. |
| 5 | +// You may obtain a copy of the License at |
| 6 | +// |
| 7 | +// http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +// |
| 9 | +// Unless required by applicable law or agreed to in writing, software |
| 10 | +// distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +// See the License for the specific language governing permissions and |
| 13 | +// limitations under the License. |
| 14 | + |
| 15 | +#pragma once |
| 16 | + |
| 17 | +#include "paddle/fluid/operators/spectral_op.h" |
| 18 | + |
| 19 | +#ifdef PADDLE_WITH_HIP |
| 20 | +#include "paddle/fluid/platform/dynload/hipfft.h" |
| 21 | +#endif |
| 22 | + |
| 23 | +#ifdef PADDLE_WITH_CUDA |
| 24 | +#include "paddle/fluid/platform/dynload/cufft.h" |
| 25 | +#endif |
| 26 | + |
| 27 | +namespace paddle { |
| 28 | +namespace operators { |
| 29 | +using ScalarType = framework::proto::VarType::Type; |
| 30 | +const int64_t kMaxCUFFTNdim = 3; |
| 31 | +const int64_t kMaxDataNdim = kMaxCUFFTNdim + 1; |
| 32 | +// This struct is used to easily compute hashes of the |
| 33 | +// parameters. It will be the **key** to the plan cache. |
| 34 | +struct PlanKey { |
| 35 | + // between 1 and kMaxCUFFTNdim, i.e., 1 <= signal_ndim <= 3 |
| 36 | + int64_t signal_ndim_; |
| 37 | + // These include additional batch dimension as well. |
| 38 | + int64_t sizes_[kMaxDataNdim]; |
| 39 | + int64_t input_shape_[kMaxDataNdim]; |
| 40 | + int64_t output_shape_[kMaxDataNdim]; |
| 41 | + FFTTransformType fft_type_; |
| 42 | + ScalarType value_type_; |
| 43 | + |
| 44 | + PlanKey() = default; |
| 45 | + |
| 46 | + PlanKey(const std::vector<int64_t>& in_shape, |
| 47 | + const std::vector<int64_t>& out_shape, |
| 48 | + const std::vector<int64_t>& signal_size, FFTTransformType fft_type, |
| 49 | + ScalarType value_type) { |
| 50 | + // Padding bits must be zeroed for hashing |
| 51 | + memset(this, 0, sizeof(*this)); |
| 52 | + signal_ndim_ = signal_size.size() - 1; |
| 53 | + fft_type_ = fft_type; |
| 54 | + value_type_ = value_type; |
| 55 | + |
| 56 | + std::copy(signal_size.cbegin(), signal_size.cend(), sizes_); |
| 57 | + std::copy(in_shape.cbegin(), in_shape.cend(), input_shape_); |
| 58 | + std::copy(out_shape.cbegin(), out_shape.cend(), output_shape_); |
| 59 | + } |
| 60 | +}; |
| 61 | + |
| 62 | +#if defined(PADDLE_WITH_CUDA) |
| 63 | +// An RAII encapsulation of cuFFTHandle |
| 64 | +class CuFFTHandle { |
| 65 | + ::cufftHandle handle_; |
| 66 | + |
| 67 | + public: |
| 68 | + CuFFTHandle() { |
| 69 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftCreate(&handle_)); |
| 70 | + } |
| 71 | + |
| 72 | + ::cufftHandle& get() { return handle_; } |
| 73 | + const ::cufftHandle& get() const { return handle_; } |
| 74 | + |
| 75 | + ~CuFFTHandle() { |
| 76 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftDestroy(handle_)); |
| 77 | + } |
| 78 | +}; |
| 79 | + |
| 80 | +using plan_size_type = long long int; // NOLINT |
| 81 | +// This class contains all the information needed to execute a cuFFT plan: |
| 82 | +// 1. the plan |
| 83 | +// 2. the workspace size needed |
| 84 | +class CuFFTConfig { |
| 85 | + public: |
| 86 | + // Only move semantics is enought for this class. Although we already use |
| 87 | + // unique_ptr for the plan, still remove copy constructor and assignment op so |
| 88 | + // we don't accidentally copy and take perf hit. |
| 89 | + explicit CuFFTConfig(const PlanKey& plan_key) |
| 90 | + : CuFFTConfig( |
| 91 | + std::vector<int64_t>(plan_key.sizes_, |
| 92 | + plan_key.sizes_ + plan_key.signal_ndim_ + 1), |
| 93 | + plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {} |
| 94 | + |
| 95 | + // sizes are full signal, including batch size and always two-sided |
| 96 | + CuFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim, |
| 97 | + FFTTransformType fft_type, ScalarType dtype) |
| 98 | + : fft_type_(fft_type), value_type_(dtype) { |
| 99 | + // signal sizes (excluding batch dim) |
| 100 | + std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end()); |
| 101 | + |
| 102 | + // input batch size |
| 103 | + const auto batch = static_cast<plan_size_type>(sizes[0]); |
| 104 | + // const int64_t signal_ndim = sizes.size() - 1; |
| 105 | + PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1, |
| 106 | + platform::errors::InvalidArgument( |
| 107 | + "The signal_ndim must be equal to sizes.size() - 1," |
| 108 | + "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]", |
| 109 | + signal_ndim, sizes.size() - 1)); |
| 110 | + |
| 111 | + cudaDataType itype, otype, exec_type; |
| 112 | + const auto complex_input = has_complex_input(fft_type); |
| 113 | + const auto complex_output = has_complex_output(fft_type); |
| 114 | + if (dtype == framework::proto::VarType::FP32) { |
| 115 | + itype = complex_input ? CUDA_C_32F : CUDA_R_32F; |
| 116 | + otype = complex_output ? CUDA_C_32F : CUDA_R_32F; |
| 117 | + exec_type = CUDA_C_32F; |
| 118 | + } else if (dtype == framework::proto::VarType::FP64) { |
| 119 | + itype = complex_input ? CUDA_C_64F : CUDA_R_64F; |
| 120 | + otype = complex_output ? CUDA_C_64F : CUDA_R_64F; |
| 121 | + exec_type = CUDA_C_64F; |
| 122 | + } else if (dtype == framework::proto::VarType::FP16) { |
| 123 | + itype = complex_input ? CUDA_C_16F : CUDA_R_16F; |
| 124 | + otype = complex_output ? CUDA_C_16F : CUDA_R_16F; |
| 125 | + exec_type = CUDA_C_16F; |
| 126 | + } else { |
| 127 | + PADDLE_THROW(platform::errors::InvalidArgument( |
| 128 | + "cuFFT only support transforms of type float16, float32 and " |
| 129 | + "float64")); |
| 130 | + } |
| 131 | + |
| 132 | + // disable auto allocation of workspace to use allocator from the framework |
| 133 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftSetAutoAllocation( |
| 134 | + plan(), /* autoAllocate */ 0)); |
| 135 | + |
| 136 | + size_t ws_size_t; |
| 137 | + |
| 138 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cufftXtMakePlanMany( |
| 139 | + plan(), signal_ndim, signal_sizes.data(), |
| 140 | + /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, itype, |
| 141 | + /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, otype, |
| 142 | + batch, &ws_size_t, exec_type)); |
| 143 | + |
| 144 | + ws_size = ws_size_t; |
| 145 | + } |
| 146 | + |
| 147 | + const cufftHandle& plan() const { return plan_ptr.get(); } |
| 148 | + |
| 149 | + FFTTransformType transform_type() const { return fft_type_; } |
| 150 | + ScalarType data_type() const { return value_type_; } |
| 151 | + size_t workspace_size() const { return ws_size; } |
| 152 | + |
| 153 | + private: |
| 154 | + CuFFTHandle plan_ptr; |
| 155 | + size_t ws_size; |
| 156 | + FFTTransformType fft_type_; |
| 157 | + ScalarType value_type_; |
| 158 | +}; |
| 159 | + |
| 160 | +#elif defined(PADDLE_WITH_HIP) |
| 161 | +// An RAII encapsulation of cuFFTHandle |
| 162 | +class HIPFFTHandle { |
| 163 | + ::hipfftHandle handle_; |
| 164 | + |
| 165 | + public: |
| 166 | + HIPFFTHandle() { |
| 167 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftCreate(&handle_)); |
| 168 | + } |
| 169 | + |
| 170 | + ::hipfftHandle& get() { return handle_; } |
| 171 | + const ::hipfftHandle& get() const { return handle_; } |
| 172 | + |
| 173 | + ~HIPFFTHandle() { |
| 174 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftDestroy(handle_)); |
| 175 | + } |
| 176 | +}; |
| 177 | +using plan_size_type = int; |
| 178 | +// This class contains all the information needed to execute a cuFFT plan: |
| 179 | +// 1. the plan |
| 180 | +// 2. the workspace size needed |
| 181 | +class HIPFFTConfig { |
| 182 | + public: |
| 183 | + // Only move semantics is enought for this class. Although we already use |
| 184 | + // unique_ptr for the plan, still remove copy constructor and assignment op so |
| 185 | + // we don't accidentally copy and take perf hit. |
| 186 | + explicit HIPFFTConfig(const PlanKey& plan_key) |
| 187 | + : HIPFFTConfig( |
| 188 | + std::vector<int64_t>(plan_key.sizes_, |
| 189 | + plan_key.sizes_ + plan_key.signal_ndim_ + 1), |
| 190 | + plan_key.signal_ndim_, plan_key.fft_type_, plan_key.value_type_) {} |
| 191 | + |
| 192 | + // sizes are full signal, including batch size and always two-sided |
| 193 | + HIPFFTConfig(const std::vector<int64_t>& sizes, const int64_t signal_ndim, |
| 194 | + FFTTransformType fft_type, ScalarType dtype) |
| 195 | + : fft_type_(fft_type), value_type_(dtype) { |
| 196 | + // signal sizes (excluding batch dim) |
| 197 | + std::vector<plan_size_type> signal_sizes(sizes.begin() + 1, sizes.end()); |
| 198 | + |
| 199 | + // input batch size |
| 200 | + const auto batch = static_cast<plan_size_type>(sizes[0]); |
| 201 | + // const int64_t signal_ndim = sizes.size() - 1; |
| 202 | + PADDLE_ENFORCE_EQ(signal_ndim, sizes.size() - 1, |
| 203 | + platform::errors::InvalidArgument( |
| 204 | + "The signal_ndim must be equal to sizes.size() - 1," |
| 205 | + "But signal_ndim is: [%d], sizes.size() - 1 is: [%d]", |
| 206 | + signal_ndim, sizes.size() - 1)); |
| 207 | + |
| 208 | + hipfftType exec_type = [&] { |
| 209 | + if (dtype == framework::proto::VarType::FP32) { |
| 210 | + switch (fft_type) { |
| 211 | + case FFTTransformType::C2C: |
| 212 | + return HIPFFT_C2C; |
| 213 | + case FFTTransformType::R2C: |
| 214 | + return HIPFFT_R2C; |
| 215 | + case FFTTransformType::C2R: |
| 216 | + return HIPFFT_C2R; |
| 217 | + } |
| 218 | + } else if (dtype == framework::proto::VarType::FP64) { |
| 219 | + switch (fft_type) { |
| 220 | + case FFTTransformType::C2C: |
| 221 | + return HIPFFT_Z2Z; |
| 222 | + case FFTTransformType::R2C: |
| 223 | + return HIPFFT_D2Z; |
| 224 | + case FFTTransformType::C2R: |
| 225 | + return HIPFFT_Z2D; |
| 226 | + } |
| 227 | + } |
| 228 | + PADDLE_THROW(platform::errors::InvalidArgument( |
| 229 | + "hipFFT only support transforms of type float32 and float64")); |
| 230 | + }(); |
| 231 | + |
| 232 | + // disable auto allocation of workspace to use allocator from the framework |
| 233 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftSetAutoAllocation( |
| 234 | + plan(), /* autoAllocate */ 0)); |
| 235 | + |
| 236 | + size_t ws_size_t; |
| 237 | + |
| 238 | + PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::hipfftMakePlanMany( |
| 239 | + plan(), signal_ndim, signal_sizes.data(), |
| 240 | + /* inembed */ nullptr, /* base_istride */ 1, /* idist */ 1, |
| 241 | + /* onembed */ nullptr, /* base_ostride */ 1, /* odist */ 1, exec_type, |
| 242 | + batch, &ws_size_t)); |
| 243 | + |
| 244 | + ws_size = ws_size_t; |
| 245 | + } |
| 246 | + |
| 247 | + const hipfftHandle& plan() const { return plan_ptr.get(); } |
| 248 | + |
| 249 | + FFTTransformType transform_type() const { return fft_type_; } |
| 250 | + ScalarType data_type() const { return value_type_; } |
| 251 | + size_t workspace_size() const { return ws_size; } |
| 252 | + |
| 253 | + private: |
| 254 | + HIPFFTHandle plan_ptr; |
| 255 | + size_t ws_size; |
| 256 | + FFTTransformType fft_type_; |
| 257 | + ScalarType value_type_; |
| 258 | +}; |
| 259 | +#endif |
| 260 | +} // namespace operators |
| 261 | +} // namespace paddle |
0 commit comments