diff --git a/CMakeLists.txt b/CMakeLists.txt index 6bb2638b2c1..71aeb8165ce 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -39,7 +39,7 @@ option(ENABLE_OPENCV_CUDA "if to enable opencv with cuda, this will allow proces option(ENABLE_DEBUG "if to enable print debug information, this may reduce performance." OFF) # Whether to build fastdeply with vision/text/... examples, only for testings. -option(WTIH_VISION_EXAMPLES "Whether to build fastdeply with vision examples" ON) +option(WITH_VISION_EXAMPLES "Whether to build fastdeply with vision examples" ON) if(ENABLE_DEBUG) add_definitions(-DFASTDEPLOY_DEBUG) @@ -53,7 +53,7 @@ option(BUILD_FASTDEPLOY_PYTHON "if build python lib for fastdeploy." OFF) include_directories(${PROJECT_SOURCE_DIR}) include_directories(${CMAKE_CURRENT_BINARY_DIR}) -if (WTIH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples) +if (WITH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples) # ENABLE_VISION and ENABLE_VISION_VISUALIZE must be ON if enable vision examples. message(STATUS "Found WTIH_VISION_EXAMPLES ON, so, force ENABLE_VISION and ENABLE_VISION_VISUALIZE ON") set(ENABLE_VISION ON CACHE BOOL "force to enable vision models usage" FORCE) @@ -181,8 +181,8 @@ set_target_properties(fastdeploy PROPERTIES VERSION ${FASTDEPLOY_VERSION}) target_link_libraries(fastdeploy ${DEPEND_LIBS}) # add examples after prepare include paths for third-parties -if (WTIH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples) - add_definitions(-DWTIH_VISION_EXAMPLES) +if (WITH_VISION_EXAMPLES AND EXISTS ${PROJECT_SOURCE_DIR}/examples) + add_definitions(-DWITH_VISION_EXAMPLES) set(EXECUTABLE_OUTPUT_PATH ${PROJECT_SOURCE_DIR}/examples/bin) add_subdirectory(examples) endif() diff --git a/examples/CMakeLists.txt b/examples/CMakeLists.txt index 4228a3e01f7..7dd3e0e25e3 100644 --- a/examples/CMakeLists.txt +++ b/examples/CMakeLists.txt @@ -14,9 +14,10 @@ function(add_fastdeploy_executable field url model) endfunction() # vision examples -if (WTIH_VISION_EXAMPLES) +if (WITH_VISION_EXAMPLES) add_fastdeploy_executable(vision ultralytics yolov5) add_fastdeploy_executable(vision meituan yolov6) + add_fastdeploy_executable(vision megvii yolox) endif() # other examples ... \ No newline at end of file diff --git a/examples/vision/megvii_yolox.cc b/examples/vision/megvii_yolox.cc new file mode 100644 index 00000000000..340694b54f6 --- /dev/null +++ b/examples/vision/megvii_yolox.cc @@ -0,0 +1,52 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision.h" + +int main() { + namespace vis = fastdeploy::vision; + + std::string model_file = "../resources/models/yolox_s.onnx"; + std::string img_path = "../resources/images/bus.jpg"; + std::string vis_path = "../resources/outputs/megvii_yolox_vis_result.jpg"; + + auto model = vis::megvii::YOLOX(model_file); + if (!model.Initialized()) { + std::cerr << "Init Failed! Model: " << model_file << std::endl; + return -1; + } else { + std::cout << "Init Done! Model:" << model_file << std::endl; + } + model.EnableDebug(); + + cv::Mat im = cv::imread(img_path); + cv::Mat vis_im = im.clone(); + + vis::DetectionResult res; + if (!model.Predict(&im, &res)) { + std::cerr << "Prediction Failed." << std::endl; + return -1; + } else { + std::cout << "Prediction Done!" << std::endl; + } + + // 输出预测框结果 + std::cout << res.Str() << std::endl; + + // 可视化预测结果 + vis::Visualize::VisDetection(&vis_im, res); + cv::imwrite(vis_path, vis_im); + std::cout << "Detect Done! Saved: " << vis_path << std::endl; + return 0; +} diff --git a/examples/vision/meituan_yolov6.cc b/examples/vision/meituan_yolov6.cc index b92abcd4296..7bdd78e5dca 100644 --- a/examples/vision/meituan_yolov6.cc +++ b/examples/vision/meituan_yolov6.cc @@ -23,11 +23,10 @@ int main() { auto model = vis::meituan::YOLOv6(model_file); if (!model.Initialized()) { - std::cerr << "Init Failed." << std::endl; + std::cerr << "Init Failed! Model: " << model_file << std::endl; return -1; } else { - std::cout << "Init Done! Dynamic Mode: " - << model.IsDynamicShape() << std::endl; + std::cout << "Init Done! Model:" << model_file << std::endl; } model.EnableDebug(); diff --git a/fastdeploy/vision.h b/fastdeploy/vision.h index 1bcf9a26f97..d0e83ed030c 100644 --- a/fastdeploy/vision.h +++ b/fastdeploy/vision.h @@ -18,6 +18,7 @@ #include "fastdeploy/vision/ppcls/model.h" #include "fastdeploy/vision/ultralytics/yolov5.h" #include "fastdeploy/vision/meituan/yolov6.h" +#include "fastdeploy/vision/megvii/yolox.h" #endif #include "fastdeploy/vision/visualize/visualize.h" diff --git a/fastdeploy/vision/__init__.py b/fastdeploy/vision/__init__.py index 81a1424727f..f2de6190b08 100644 --- a/fastdeploy/vision/__init__.py +++ b/fastdeploy/vision/__init__.py @@ -17,4 +17,5 @@ from . import ppcls from . import ultralytics from . import meituan +from . import megvii from . import visualize diff --git a/fastdeploy/vision/common/processors/normalize.h b/fastdeploy/vision/common/processors/normalize.h index eeb839d0245..b8a66e945a4 100644 --- a/fastdeploy/vision/common/processors/normalize.h +++ b/fastdeploy/vision/common/processors/normalize.h @@ -45,7 +45,6 @@ class Normalize : public Processor { const std::vector& min = std::vector(), const std::vector& max = std::vector(), ProcLib lib = ProcLib::OPENCV_CPU); - private: std::vector alpha_; std::vector beta_; diff --git a/fastdeploy/vision/megvii/__init__.py b/fastdeploy/vision/megvii/__init__.py new file mode 100644 index 00000000000..67096e4fc8f --- /dev/null +++ b/fastdeploy/vision/megvii/__init__.py @@ -0,0 +1,96 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +import logging +from ... import FastDeployModel, Frontend +from ... import fastdeploy_main as C + + +class YOLOX(FastDeployModel): + def __init__(self, + model_file, + params_file="", + runtime_option=None, + model_format=Frontend.ONNX): + # 调用基函数进行backend_option的初始化 + # 初始化后的option保存在self._runtime_option + super(YOLOX, self).__init__(runtime_option) + + self._model = C.vision.megvii.YOLOX( + model_file, params_file, self._runtime_option, model_format) + # 通过self.initialized判断整个模型的初始化是否成功 + assert self.initialized, "YOLOX initialize failed." + + def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5): + return self._model.predict(input_image, conf_threshold, + nms_iou_threshold) + + # 一些跟YOLOX模型有关的属性封装 + # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持) + @property + def size(self): + return self._model.size + + @property + def padding_value(self): + return self._model.padding_value + + @property + def is_decode_exported(self): + return self._model.is_decode_exported + + @property + def downsample_strides(self): + return self._model.downsample_strides + + @property + def max_wh(self): + return self._model.max_wh + + @size.setter + def size(self, wh): + assert isinstance(wh, [list, tuple]),\ + "The value to set `size` must be type of tuple or list." + assert len(wh) == 2,\ + "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format( + len(wh)) + self._model.size = wh + + @padding_value.setter + def padding_value(self, value): + assert isinstance( + value, + list), "The value to set `padding_value` must be type of list." + self._model.padding_value = value + + @is_decode_exported.setter + def is_decode_exported(self, value): + assert isinstance( + value, + bool), "The value to set `is_decode_exported` must be type of bool." + self._model.max_wh = value + + @downsample_strides.setter + def downsample_strides(self, value): + assert isinstance( + value, + list), "The value to set `downsample_strides` must be type of list." + self._model.downsample_strides = value + + @max_wh.setter + def max_wh(self, value): + assert isinstance( + value, float), "The value to set `max_wh` must be type of float." + self._model.max_wh = value diff --git a/fastdeploy/vision/megvii/megvii_pybind.cc b/fastdeploy/vision/megvii/megvii_pybind.cc new file mode 100644 index 00000000000..7e7fbc79aa5 --- /dev/null +++ b/fastdeploy/vision/megvii/megvii_pybind.cc @@ -0,0 +1,41 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/pybind/main.h" + +namespace fastdeploy { +void BindMegvii(pybind11::module& m) { + auto megvii_module = + m.def_submodule("megvii", "https://github.com/megvii/YOLOX"); + pybind11::class_( + megvii_module, "YOLOX") + .def(pybind11::init()) + .def("predict", + [](vision::megvii::YOLOX& self, pybind11::array& data, + float conf_threshold, float nms_iou_threshold) { + auto mat = PyArrayToCvMat(data); + vision::DetectionResult res; + self.Predict(&mat, &res, conf_threshold, nms_iou_threshold); + return res; + }) + .def_readwrite("size", &vision::megvii::YOLOX::size) + .def_readwrite("padding_value", + &vision::megvii::YOLOX::padding_value) + .def_readwrite("is_decode_exported", + &vision::megvii::YOLOX::is_decode_exported) + .def_readwrite("downsample_strides", + &vision::megvii::YOLOX::downsample_strides) + .def_readwrite("max_wh", &vision::megvii::YOLOX::max_wh); +} +} // namespace fastdeploy diff --git a/fastdeploy/vision/megvii/yolox.cc b/fastdeploy/vision/megvii/yolox.cc new file mode 100644 index 00000000000..f2cb5d1c346 --- /dev/null +++ b/fastdeploy/vision/megvii/yolox.cc @@ -0,0 +1,339 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision/megvii/yolox.h" +#include "fastdeploy/utils/perf.h" +#include "fastdeploy/vision/utils/utils.h" + +namespace fastdeploy { + +namespace vision { + +namespace megvii { + +struct YOLOXAnchor { + int grid0; + int grid1; + int stride; +}; + +void GenerateYOLOXAnchors(const std::vector& size, + const std::vector& downsample_strides, + std::vector* anchors) { + // size: tuple of input (width, height) + // downsample_strides: downsample strides in YOLOX, e.g (8,16,32) + const int width = size[0]; + const int height = size[1]; + for (const auto& ds : downsample_strides) { + int num_grid_w = width / ds; + int num_grid_h = height / ds; + for (int g1 = 0; g1 < num_grid_h; ++g1) { + for (int g0 = 0; g0 < num_grid_w; ++g0) { + (*anchors).emplace_back(YOLOXAnchor{g0, g1, ds}); + } + } + } +} + +void LetterBoxWithRightBottomPad(Mat* mat, std::vector size, + std::vector color) { + // specific pre process for YOLOX, not the same as YOLOv5 + // reference: YOLOX/yolox/data/data_augment.py#L142 + float r = std::min(size[1] * 1.0f / static_cast(mat->Height()), + size[0] * 1.0f / static_cast(mat->Width())); + + int resize_h = int(round(static_cast(mat->Height()) * r)); + int resize_w = int(round(static_cast(mat->Width()) * r)); + + if (resize_h != mat->Height() || resize_w != mat->Width()) { + Resize::Run(mat, resize_w, resize_h); + } + + int pad_w = size[0] - resize_w; + int pad_h = size[1] - resize_h; + // right-bottom padding for YOLOX + if (pad_h > 0 || pad_w > 0) { + int top = 0; + int left = 0; + int right = pad_w; + int bottom = pad_h; + Pad::Run(mat, top, bottom, left, right, color); + } +} + +YOLOX::YOLOX(const std::string& model_file, const std::string& params_file, + const RuntimeOption& custom_option, const Frontend& model_format) { + if (model_format == Frontend::ONNX) { + valid_cpu_backends = {Backend::ORT}; // 指定可用的CPU后端 + valid_gpu_backends = {Backend::ORT, Backend::TRT}; // 指定可用的GPU后端 + } else { + valid_cpu_backends = {Backend::PDINFER, Backend::ORT}; + valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; + } + runtime_option = custom_option; + runtime_option.model_format = model_format; + runtime_option.model_file = model_file; + runtime_option.params_file = params_file; + initialized = Initialize(); +} + +bool YOLOX::Initialize() { + // parameters for preprocess + size = {640, 640}; + padding_value = {114.0, 114.0, 114.0}; + downsample_strides = {8, 16, 32}; + max_wh = 4096.0f; + is_decode_exported = false; + + if (!InitRuntime()) { + FDERROR << "Failed to initialize fastdeploy backend." << std::endl; + return false; + } + // Check if the input shape is dynamic after Runtime already initialized. + is_dynamic_input_ = false; + auto shape = InputInfoOfRuntime(0).shape; + for (int i = 0; i < shape.size(); ++i) { + // if height or width is dynamic + if (i >= 2 && shape[i] <= 0) { + is_dynamic_input_ = true; + break; + } + } + return true; +} + +bool YOLOX::Preprocess(Mat* mat, FDTensor* output, + std::map>* im_info) { + // YOLOX ( >= v0.1.1) preprocess steps + // 1. preproc + // 2. HWC->CHW + // 3. NO!!! BRG2GRB and Normalize needed in YOLOX + LetterBoxWithRightBottomPad(mat, size, padding_value); + // Record output shape of preprocessed image + (*im_info)["output_shape"] = {static_cast(mat->Height()), + static_cast(mat->Width())}; + + HWC2CHW::Run(mat); + Cast::Run(mat, "float"); + mat->ShareWithTensor(output); + output->shape.insert(output->shape.begin(), 1); // reshape to n, h, w, c + return true; +} + +bool YOLOX::Postprocess( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold) { + FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); + result->Clear(); + result->Reserve(infer_result.shape[1]); + if (infer_result.dtype != FDDataType::FP32) { + FDERROR << "Only support post process with float32 data." << std::endl; + return false; + } + float* data = static_cast(infer_result.Data()); + for (size_t i = 0; i < infer_result.shape[1]; ++i) { + int s = i * infer_result.shape[2]; + float confidence = data[s + 4]; + float* max_class_score = + std::max_element(data + s + 5, data + s + infer_result.shape[2]); + confidence *= (*max_class_score); + // filter boxes by conf_threshold + if (confidence <= conf_threshold) { + continue; + } + int32_t label_id = std::distance(data + s + 5, max_class_score); + // convert from [x, y, w, h] to [x1, y1, x2, y2] + result->boxes.emplace_back(std::array{ + data[s] - data[s + 2] / 2.0f + label_id * max_wh, + data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh, + data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh, + data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh}); + result->label_ids.push_back(label_id); + result->scores.push_back(confidence); + } + utils::NMS(result, nms_iou_threshold); + + // scale the boxes to the origin image shape + auto iter_out = im_info.find("output_shape"); + auto iter_ipt = im_info.find("input_shape"); + FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), + "Cannot find input_shape or output_shape from im_info."); + float out_h = iter_out->second[0]; + float out_w = iter_out->second[1]; + float ipt_h = iter_ipt->second[0]; + float ipt_w = iter_ipt->second[1]; + float r = std::min(out_h / ipt_h, out_w / ipt_w); + for (size_t i = 0; i < result->boxes.size(); ++i) { + int32_t label_id = (result->label_ids)[i]; + // clip box + result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; + result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; + result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; + result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; + result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f); + result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f); + result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f); + result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f); + result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); + result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); + result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); + result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); + } + return true; +} + +bool YOLOX::PostprocessWithDecode( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold) { + FDASSERT(infer_result.shape[0] == 1, "Only support batch =1 now."); + result->Clear(); + result->Reserve(infer_result.shape[1]); + if (infer_result.dtype != FDDataType::FP32) { + FDERROR << "Only support post process with float32 data." << std::endl; + return false; + } + // generate anchors with dowmsample strides + std::vector anchors; + GenerateYOLOXAnchors(size, downsample_strides, &anchors); + + // infer_result shape might look like (1,n,85=5+80) + float* data = static_cast(infer_result.Data()); + for (size_t i = 0; i < infer_result.shape[1]; ++i) { + int s = i * infer_result.shape[2]; + float confidence = data[s + 4]; + float* max_class_score = + std::max_element(data + s + 5, data + s + infer_result.shape[2]); + confidence *= (*max_class_score); + // filter boxes by conf_threshold + if (confidence <= conf_threshold) { + continue; + } + int32_t label_id = std::distance(data + s + 5, max_class_score); + // fetch i-th anchor + float grid0 = static_cast(anchors.at(i).grid0); + float grid1 = static_cast(anchors.at(i).grid1); + float downsample_stride = static_cast(anchors.at(i).stride); + // convert from offsets to [x, y, w, h] + float dx = data[s]; + float dy = data[s + 1]; + float dw = data[s + 2]; + float dh = data[s + 3]; + + float x = (dx + grid0) * downsample_stride; + float y = (dy + grid1) * downsample_stride; + float w = std::exp(dw) * downsample_stride; + float h = std::exp(dh) * downsample_stride; + + // convert from [x, y, w, h] to [x1, y1, x2, y2] + result->boxes.emplace_back(std::array{ + x - w / 2.0f + label_id * max_wh, y - h / 2.0f + label_id * max_wh, + x + w / 2.0f + label_id * max_wh, y + h / 2.0f + label_id * max_wh}); + // label_id * max_wh for multi classes NMS + result->label_ids.push_back(label_id); + result->scores.push_back(confidence); + } + utils::NMS(result, nms_iou_threshold); + + // scale the boxes to the origin image shape + auto iter_out = im_info.find("output_shape"); + auto iter_ipt = im_info.find("input_shape"); + FDASSERT(iter_out != im_info.end() && iter_ipt != im_info.end(), + "Cannot find input_shape or output_shape from im_info."); + float out_h = iter_out->second[0]; + float out_w = iter_out->second[1]; + float ipt_h = iter_ipt->second[0]; + float ipt_w = iter_ipt->second[1]; + float r = std::min(out_h / ipt_h, out_w / ipt_w); + for (size_t i = 0; i < result->boxes.size(); ++i) { + int32_t label_id = (result->label_ids)[i]; + // clip box + result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id; + result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id; + result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id; + result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id; + result->boxes[i][0] = std::max(result->boxes[i][0] / r, 0.0f); + result->boxes[i][1] = std::max(result->boxes[i][1] / r, 0.0f); + result->boxes[i][2] = std::max(result->boxes[i][2] / r, 0.0f); + result->boxes[i][3] = std::max(result->boxes[i][3] / r, 0.0f); + result->boxes[i][0] = std::min(result->boxes[i][0], ipt_w - 1.0f); + result->boxes[i][1] = std::min(result->boxes[i][1], ipt_h - 1.0f); + result->boxes[i][2] = std::min(result->boxes[i][2], ipt_w - 1.0f); + result->boxes[i][3] = std::min(result->boxes[i][3], ipt_h - 1.0f); + } + return true; +} + +bool YOLOX::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold, + float nms_iou_threshold) { +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_START(0) +#endif + + Mat mat(*im); + std::vector input_tensors(1); + + std::map> im_info; + + // Record the shape of image and the shape of preprocessed image + im_info["input_shape"] = {static_cast(mat.Height()), + static_cast(mat.Width())}; + im_info["output_shape"] = {static_cast(mat.Height()), + static_cast(mat.Width())}; + + if (!Preprocess(&mat, &input_tensors[0], &im_info)) { + FDERROR << "Failed to preprocess input image." << std::endl; + return false; + } + +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(0, "Preprocess") + TIMERECORD_START(1) +#endif + + input_tensors[0].name = InputInfoOfRuntime(0).name; + std::vector output_tensors; + if (!Infer(input_tensors, &output_tensors)) { + FDERROR << "Failed to inference." << std::endl; + return false; + } +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(1, "Inference") + TIMERECORD_START(2) +#endif + + if (is_decode_exported) { + if (!Postprocess(output_tensors[0], result, im_info, conf_threshold, + nms_iou_threshold)) { + FDERROR << "Failed to post process." << std::endl; + return false; + } + } else { + if (!PostprocessWithDecode(output_tensors[0], result, im_info, + conf_threshold, nms_iou_threshold)) { + FDERROR << "Failed to post process." << std::endl; + return false; + } + } + +#ifdef FASTDEPLOY_DEBUG + TIMERECORD_END(2, "Postprocess") +#endif + return true; +} + +} // namespace megvii +} // namespace vision +} // namespace fastdeploy \ No newline at end of file diff --git a/fastdeploy/vision/megvii/yolox.h b/fastdeploy/vision/megvii/yolox.h new file mode 100644 index 00000000000..7ff8edcf007 --- /dev/null +++ b/fastdeploy/vision/megvii/yolox.h @@ -0,0 +1,105 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "fastdeploy/fastdeploy_model.h" +#include "fastdeploy/vision/common/processors/transform.h" +#include "fastdeploy/vision/common/result.h" + +namespace fastdeploy { + +namespace vision { + +namespace megvii { + +class FASTDEPLOY_DECL YOLOX : public FastDeployModel { + public: + // 当model_format为ONNX时,无需指定params_file + // 当model_format为Paddle时,则需同时指定model_file & params_file + YOLOX(const std::string& model_file, const std::string& params_file = "", + const RuntimeOption& custom_option = RuntimeOption(), + const Frontend& model_format = Frontend::ONNX); + + // 定义模型的名称 + std::string ModelName() const { return "megvii/YOLOX"; } + + // 模型预测接口,即用户调用的接口 + // im 为用户的输入数据,目前对于CV均定义为cv::Mat + // result 为模型预测的输出结构体 + // conf_threshold 为后处理的参数 + // nms_iou_threshold 为后处理的参数 + virtual bool Predict(cv::Mat* im, DetectionResult* result, + float conf_threshold = 0.25, + float nms_iou_threshold = 0.5); + + // 以下为模型在预测时的一些参数,基本是前后处理所需 + // 用户在创建模型后,可根据模型的要求,以及自己的需求 + // 对参数进行修改 + // tuple of (width, height) + std::vector size; + // padding value, size should be same with Channels + std::vector padding_value; + // whether the model_file was exported with decode module. The official + // YOLOX/tools/export_onnx.py script will export ONNX file without + // decode module. Please set it 'true' manually if the model file + // was exported with decode module. + bool is_decode_exported; + // downsample strides for YOLOX to generate anchors, will take + // (8,16,32) as default values, might have stride=64. + std::vector downsample_strides; + // for offseting the boxes by classes when using NMS, default 4096. + float max_wh; + + private: + // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 + bool Initialize(); + + // 输入图像预处理操作 + // Mat为FastDeploy定义的数据结构 + // FDTensor为预处理后的Tensor数据,传给后端进行推理 + // im_info为预处理过程保存的数据,在后处理中需要用到 + bool Preprocess(Mat* mat, FDTensor* outputs, + std::map>* im_info); + + // 后端推理结果后处理,输出给用户 + // infer_result 为后端推理后的输出Tensor + // result 为模型预测的结果 + // im_info 为预处理记录的信息,后处理用于还原box + // conf_threshold 后处理时过滤box的置信度阈值 + // nms_iou_threshold 后处理时NMS设定的iou阈值 + bool Postprocess( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold); + + // YOLOX的官方脚本默认导出不带decode模块的模型文件 需要在后处理进行decode + bool PostprocessWithDecode( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold); + + // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致 + bool IsDynamicInput() const { return is_dynamic_input_; } + + // whether to inference with dynamic shape (e.g ONNX export with dynamic shape or not.) + // megvii/YOLOX official 'export_onnx.py' script will export static ONNX by default. + // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This value will + // auto check by fastdeploy after the internal Runtime already initialized. + bool is_dynamic_input_; +}; + +} // namespace megvii +} // namespace vision +} // namespace fastdeploy diff --git a/fastdeploy/vision/meituan/__init__.py b/fastdeploy/vision/meituan/__init__.py index 5ff45f0fcef..7b6635dd368 100644 --- a/fastdeploy/vision/meituan/__init__.py +++ b/fastdeploy/vision/meituan/__init__.py @@ -37,10 +37,6 @@ def predict(self, input_image, conf_threshold=0.25, nms_iou_threshold=0.5): return self._model.predict(input_image, conf_threshold, nms_iou_threshold) - # BOOL: 查看输入的模型是否为动态维度的 - def is_dynamic_shape(self): - return self._model.is_dynamic_shape() - # 一些跟YOLOv6模型有关的属性封装 # 多数是预处理相关,可通过修改如model.size = [1280, 1280]改变预处理时resize的大小(前提是模型支持) @property diff --git a/fastdeploy/vision/meituan/meituan_pybind.cc b/fastdeploy/vision/meituan/meituan_pybind.cc index 2667bf8bedf..d1e81fa582c 100644 --- a/fastdeploy/vision/meituan/meituan_pybind.cc +++ b/fastdeploy/vision/meituan/meituan_pybind.cc @@ -29,10 +29,6 @@ void BindMeituan(pybind11::module& m) { self.Predict(&mat, &res, conf_threshold, nms_iou_threshold); return res; }) - .def("is_dynamic_shape", - [](vision::meituan::YOLOv6& self) { - return self.IsDynamicShape(); - }) .def_readwrite("size", &vision::meituan::YOLOv6::size) .def_readwrite("padding_value", &vision::meituan::YOLOv6::padding_value) diff --git a/fastdeploy/vision/meituan/yolov6.cc b/fastdeploy/vision/meituan/yolov6.cc index 213f30b87f7..8f37bf89c6f 100644 --- a/fastdeploy/vision/meituan/yolov6.cc +++ b/fastdeploy/vision/meituan/yolov6.cc @@ -91,17 +91,18 @@ bool YOLOv6::Initialize() { return false; } // Check if the input shape is dynamic after Runtime already initialized, - // Note that, YOLOv6 has 1 input only. We need to force is_mini_pad - // 'false' to keep static shape after padding (LetterBox) - // when the is_dynamic_shape is 'false'. - is_dynamic_shape_ = false; + // Note that, We need to force is_mini_pad 'false' to keep static + // shape after padding (LetterBox) when the is_dynamic_shape is 'false'. + is_dynamic_input_ = false; auto shape = InputInfoOfRuntime(0).shape; - for (const auto &d: shape) { - if (d <= 0) { - is_dynamic_shape_ = true; + for (int i = 0; i < shape.size(); ++i) { + // if height or width is dynamic + if (i >= 2 && shape[i] <= 0) { + is_dynamic_input_ = true; + break; } } - if (!is_dynamic_shape_) { + if (!is_dynamic_input_) { is_mini_pad = false; } return true; diff --git a/fastdeploy/vision/meituan/yolov6.h b/fastdeploy/vision/meituan/yolov6.h index 81215b2342f..b2d6a062df0 100644 --- a/fastdeploy/vision/meituan/yolov6.h +++ b/fastdeploy/vision/meituan/yolov6.h @@ -33,28 +33,7 @@ class FASTDEPLOY_DECL YOLOv6 : public FastDeployModel { const Frontend& model_format = Frontend::ONNX); // 定义模型的名称 - virtual std::string ModelName() const { return "meituan/YOLOv6"; } - - // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 - virtual bool Initialize(); - - // 输入图像预处理操作 - // Mat为FastDeploy定义的数据结构 - // FDTensor为预处理后的Tensor数据,传给后端进行推理 - // im_info为预处理过程保存的数据,在后处理中需要用到 - virtual bool Preprocess(Mat* mat, FDTensor* outputs, - std::map>* im_info); - - // 后端推理结果后处理,输出给用户 - // infer_result 为后端推理后的输出Tensor - // result 为模型预测的结果 - // im_info 为预处理记录的信息,后处理用于还原box - // conf_threshold 后处理时过滤box的置信度阈值 - // nms_iou_threshold 后处理时NMS设定的iou阈值 - virtual bool Postprocess( - FDTensor& infer_result, DetectionResult* result, - const std::map>& im_info, - float conf_threshold, float nms_iou_threshold); + std::string ModelName() const { return "meituan/YOLOv6"; } // 模型预测接口,即用户调用的接口 // im 为用户的输入数据,目前对于CV均定义为cv::Mat @@ -65,9 +44,6 @@ class FASTDEPLOY_DECL YOLOv6 : public FastDeployModel { float conf_threshold = 0.25, float nms_iou_threshold = 0.5); - // 用户可以通过该接口 查看输入的模型是否为动态维度 - virtual bool IsDynamicShape() const { return is_dynamic_shape_; } - // 以下为模型在预测时的一些参数,基本是前后处理所需 // 用户在创建模型后,可根据模型的要求,以及自己的需求 // 对参数进行修改 @@ -88,13 +64,38 @@ class FASTDEPLOY_DECL YOLOv6 : public FastDeployModel { // for offseting the boxes by classes when using NMS, default 4096 in meituan/YOLOv6 float max_wh; - protected: + private: + // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 + bool Initialize(); + + // 输入图像预处理操作 + // Mat为FastDeploy定义的数据结构 + // FDTensor为预处理后的Tensor数据,传给后端进行推理 + // im_info为预处理过程保存的数据,在后处理中需要用到 + bool Preprocess(Mat* mat, FDTensor* outputs, + std::map>* im_info); + + // 后端推理结果后处理,输出给用户 + // infer_result 为后端推理后的输出Tensor + // result 为模型预测的结果 + // im_info 为预处理记录的信息,后处理用于还原box + // conf_threshold 后处理时过滤box的置信度阈值 + // nms_iou_threshold 后处理时NMS设定的iou阈值 + bool Postprocess( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold); + + // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致 + bool IsDynamicInput() const { return is_dynamic_input_; } + // whether to inference with dynamic shape (e.g ONNX export with dynamic shape or not.) // meituan/YOLOv6 official 'export_onnx.py' script will export static ONNX by default. - // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This value will + // while is_dynamic_input if 'false', is_mini_pad will force 'false'. This value will // auto check by fastdeploy after the internal Runtime already initialized. - bool is_dynamic_shape_; + bool is_dynamic_input_; }; + } // namespace meituan } // namespace vision } // namespace fastdeploy \ No newline at end of file diff --git a/fastdeploy/vision/ppcls/model.h b/fastdeploy/vision/ppcls/model.h index f649ca1977f..36841d74c68 100644 --- a/fastdeploy/vision/ppcls/model.h +++ b/fastdeploy/vision/ppcls/model.h @@ -16,6 +16,10 @@ class FASTDEPLOY_DECL Model : public FastDeployModel { std::string ModelName() const { return "ppclas-classify"; } + // TODO(jiangjiajun) Batch is on the way + virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); + + private: bool Initialize(); bool BuildPreprocessPipelineFromConfig(); @@ -25,10 +29,6 @@ class FASTDEPLOY_DECL Model : public FastDeployModel { bool Postprocess(const FDTensor& infer_result, ClassifyResult* result, int topk = 1); - // TODO(jiangjiajun) Batch is on the way - virtual bool Predict(cv::Mat* im, ClassifyResult* result, int topk = 1); - - private: std::vector> processors_; std::string config_file_; }; diff --git a/fastdeploy/vision/ultralytics/yolov5.cc b/fastdeploy/vision/ultralytics/yolov5.cc index 372f6c060a4..193cfe97948 100644 --- a/fastdeploy/vision/ultralytics/yolov5.cc +++ b/fastdeploy/vision/ultralytics/yolov5.cc @@ -1,3 +1,17 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + #include "fastdeploy/vision/ultralytics/yolov5.h" #include "fastdeploy/utils/perf.h" #include "fastdeploy/vision/utils/utils.h" @@ -73,6 +87,21 @@ bool YOLOv5::Initialize() { FDERROR << "Failed to initialize fastdeploy backend." << std::endl; return false; } + // Check if the input shape is dynamic after Runtime already initialized, + // Note that, We need to force is_mini_pad 'false' to keep static + // shape after padding (LetterBox) when the is_dynamic_shape is 'false'. + is_dynamic_input_ = false; + auto shape = InputInfoOfRuntime(0).shape; + for (int i = 0; i < shape.size(); ++i) { + // if height or width is dynamic + if (i >= 2 && shape[i] <= 0) { + is_dynamic_input_ = true; + break; + } + } + if (!is_dynamic_input_) { + is_mini_pad = false; + } return true; } diff --git a/fastdeploy/vision/ultralytics/yolov5.h b/fastdeploy/vision/ultralytics/yolov5.h index 9a8197e53bf..573b0294f2b 100644 --- a/fastdeploy/vision/ultralytics/yolov5.h +++ b/fastdeploy/vision/ultralytics/yolov5.h @@ -30,29 +30,7 @@ class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel { const Frontend& model_format = Frontend::ONNX); // 定义模型的名称 - virtual std::string ModelName() const { return "ultralytics/yolov5"; } - - // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 - virtual bool Initialize(); - - // 输入图像预处理操作 - // Mat为FastDeploy定义的数据结构 - // FDTensor为预处理后的Tensor数据,传给后端进行推理 - // im_info为预处理过程保存的数据,在后处理中需要用到 - virtual bool Preprocess(Mat* mat, FDTensor* outputs, - std::map>* im_info); - - // 后端推理结果后处理,输出给用户 - // infer_result 为后端推理后的输出Tensor - // result 为模型预测的结果 - // im_info 为预处理记录的信息,后处理用于还原box - // conf_threshold 后处理时过滤box的置信度阈值 - // nms_iou_threshold 后处理时NMS设定的iou阈值 - // multi_label 后处理时box选取是否采用多标签方式 - virtual bool Postprocess( - FDTensor& infer_result, DetectionResult* result, - const std::map>& im_info, - float conf_threshold, float nms_iou_threshold, bool multi_label); + std::string ModelName() const { return "ultralytics/yolov5"; } // 模型预测接口,即用户调用的接口 // im 为用户的输入数据,目前对于CV均定义为cv::Mat @@ -61,7 +39,7 @@ class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel { // nms_iou_threshold 为后处理的参数 virtual bool Predict(cv::Mat* im, DetectionResult* result, float conf_threshold = 0.25, - float nms_iou_threshold = 0.5); + float nms_iou_threshold = 0.5); // 以下为模型在预测时的一些参数,基本是前后处理所需 // 用户在创建模型后,可根据模型的要求,以及自己的需求 @@ -84,7 +62,40 @@ class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel { float max_wh; // for different strategies to get boxes when postprocessing bool multi_label; + + private: + // 初始化函数,包括初始化后端,以及其它模型推理需要涉及的操作 + bool Initialize(); + + // 输入图像预处理操作 + // Mat为FastDeploy定义的数据结构 + // FDTensor为预处理后的Tensor数据,传给后端进行推理 + // im_info为预处理过程保存的数据,在后处理中需要用到 + bool Preprocess(Mat* mat, FDTensor* outputs, + std::map>* im_info); + + // 后端推理结果后处理,输出给用户 + // infer_result 为后端推理后的输出Tensor + // result 为模型预测的结果 + // im_info 为预处理记录的信息,后处理用于还原box + // conf_threshold 后处理时过滤box的置信度阈值 + // nms_iou_threshold 后处理时NMS设定的iou阈值 + // multi_label 后处理时box选取是否采用多标签方式 + bool Postprocess( + FDTensor& infer_result, DetectionResult* result, + const std::map>& im_info, + float conf_threshold, float nms_iou_threshold, bool multi_label); + + // 查看输入是否为动态维度的 不建议直接使用 不同模型的逻辑可能不一致 + bool IsDynamicInput() const { return is_dynamic_input_; } + + // whether to inference with dynamic shape (e.g ONNX export with dynamic shape or not.) + // YOLOv5 official 'export_onnx.py' script will export dynamic ONNX by default. + // while is_dynamic_shape if 'false', is_mini_pad will force 'false'. This value will + // auto check by fastdeploy after the internal Runtime already initialized. + bool is_dynamic_input_; }; + } // namespace ultralytics } // namespace vision } // namespace fastdeploy diff --git a/fastdeploy/vision/vision_pybind.cc b/fastdeploy/vision/vision_pybind.cc index 604d808e074..23d0e91e0e2 100644 --- a/fastdeploy/vision/vision_pybind.cc +++ b/fastdeploy/vision/vision_pybind.cc @@ -19,6 +19,7 @@ namespace fastdeploy { void BindPpClsModel(pybind11::module& m); void BindUltralytics(pybind11::module& m); void BindMeituan(pybind11::module& m); +void BindMegvii(pybind11::module& m); #ifdef ENABLE_VISION_VISUALIZE void BindVisualize(pybind11::module& m); #endif @@ -42,6 +43,7 @@ void BindVision(pybind11::module& m) { BindPpClsModel(m); BindUltralytics(m); BindMeituan(m); + BindMegvii(m); #ifdef ENABLE_VISION_VISUALIZE BindVisualize(m); #endif diff --git a/model_zoo/vision/yolov5/README.md b/model_zoo/vision/yolov5/README.md index efb5510759c..03b19d44cc3 100644 --- a/model_zoo/vision/yolov5/README.md +++ b/model_zoo/vision/yolov5/README.md @@ -1,5 +1,7 @@ # YOLOv5部署示例 +当前支持模型版本为:[YOLOv5 v6.0](https://github.com/ultralytics/yolov5/releases/download/v6.0) + 本文档说明如何进行[YOLOv5](https://github.com/ultralytics/yolov5)的快速部署推理。本目录结构如下 ``` . diff --git a/model_zoo/vision/yolov5/cpp/README.md b/model_zoo/vision/yolov5/cpp/README.md index dd740ff58aa..a1f1bde49c9 100644 --- a/model_zoo/vision/yolov5/cpp/README.md +++ b/model_zoo/vision/yolov5/cpp/README.md @@ -1,5 +1,6 @@ # 编译YOLOv5示例 +当前支持模型版本为:[YOLOv5 v6.0](https://github.com/ultralytics/yolov5/releases/download/v6.0) ``` # 下载和解压预测库 diff --git a/model_zoo/vision/yolov6/README.md b/model_zoo/vision/yolov6/README.md index 5fa3578bfce..accc6bdbb74 100644 --- a/model_zoo/vision/yolov6/README.md +++ b/model_zoo/vision/yolov6/README.md @@ -1,5 +1,7 @@ # YOLOv6部署示例 +当前支持模型版本为:[YOLOv6 v0.1.0](https://github.com/meituan/YOLOv6/releases/download/0.1.0) + 本文档说明如何进行[YOLOv6](https://github.com/meituan/YOLOv6)的快速部署推理。本目录结构如下 ``` . diff --git a/model_zoo/vision/yolov6/cpp/README.md b/model_zoo/vision/yolov6/cpp/README.md index c7b4d4d7ab3..0e2c03dbfa7 100644 --- a/model_zoo/vision/yolov6/cpp/README.md +++ b/model_zoo/vision/yolov6/cpp/README.md @@ -1,5 +1,6 @@ # 编译YOLOv6示例 +当前支持模型版本为:[YOLOv6 v0.1.0](https://github.com/meituan/YOLOv6/releases/download/0.1.0) ``` # 下载和解压预测库 diff --git a/model_zoo/vision/yolov6/yolov6.py b/model_zoo/vision/yolov6/yolov6.py index 5172679c970..fa8aca07409 100644 --- a/model_zoo/vision/yolov6/yolov6.py +++ b/model_zoo/vision/yolov6/yolov6.py @@ -9,7 +9,6 @@ # 加载模型 model = fd.vision.meituan.YOLOv6("yolov6s.onnx") -print(model.is_dynamic_shape()) # 预测图片 im = cv2.imread("bus.jpg") diff --git a/model_zoo/vision/yolox/README.md b/model_zoo/vision/yolox/README.md new file mode 100644 index 00000000000..d64a2f0ffae --- /dev/null +++ b/model_zoo/vision/yolox/README.md @@ -0,0 +1,47 @@ +# YOLOX部署示例 + +当前支持模型版本为:[YOLOX v0.1.1](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0) + +本文档说明如何进行[YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)的快速部署推理。本目录结构如下 +``` +. +├── cpp # C++ 代码目录 +│   ├── CMakeLists.txt # C++ 代码编译CMakeLists文件 +│   ├── README.md # C++ 代码编译部署文档 +│   └── yolox.cc # C++ 示例代码 +├── README.md # YOLOX 部署文档 +└── yolox.py # Python示例代码 +``` + +## 安装FastDeploy + +使用如下命令安装FastDeploy,注意到此处安装的是`vision-cpu`,也可根据需求安装`vision-gpu` +``` +# 安装fastdeploy-python工具 +pip install fastdeploy-python + +# 安装vision-cpu模块 +fastdeploy install vision-cpu +``` + +## Python部署 + +执行如下代码即会自动下载YOLOX模型和测试图片 +``` +python yolox.py +``` + +执行完成后会将可视化结果保存在本地`vis_result.jpg`,同时输出检测结果如下 +``` +DetectionResult: [xmin, ymin, xmax, ymax, score, label_id] +17.151855,225.294434, 805.329712, 735.578613, 0.940478, 5 +671.162109,387.403961, 809.000000, 879.525513, 0.909566, 0 +54.373432,400.188110, 204.652756, 893.662537, 0.894507, 0 +221.339310,406.614960, 347.045593, 857.299927, 0.887144, 0 +0.083759,554.987305, 61.894527, 881.098816, 0.450202, 0 +``` + +## 其它文档 + +- [C++部署](./cpp/README.md) +- [YOLOX API文档](./api.md) diff --git a/model_zoo/vision/yolox/api.md b/model_zoo/vision/yolox/api.md new file mode 100644 index 00000000000..c7a6f254b1e --- /dev/null +++ b/model_zoo/vision/yolox/api.md @@ -0,0 +1,71 @@ +# YOLOX API说明 + +## Python API + +### YOLOX类 +``` +fastdeploy.vision.megvii.YOLOX(model_file, params_file=None, runtime_option=None, model_format=fd.Frontend.ONNX) +``` +YOLOX模型加载和初始化,当model_format为`fd.Frontend.ONNX`时,只需提供model_file,如`yolox_s.onnx`;当model_format为`fd.Frontend.PADDLE`时,则需同时提供model_file和params_file。 + +**参数** + +> * **model_file**(str): 模型文件路径 +> * **params_file**(str): 参数文件路径 +> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 +> * **model_format**(Frontend): 模型格式 + +#### predict函数 +> ``` +> YOLOX.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5) +> ``` +> 模型预测结口,输入图像直接输出检测结果。 +> +> **参数** +> +> > * **image_data**(np.ndarray): 输入数据,注意需为HWC,BGR格式 +> > * **conf_threshold**(float): 检测框置信度过滤阈值 +> > * **nms_iou_threshold**(float): NMS处理过程中iou阈值 + +示例代码参考[yolox.py](./yolox.py) + + +## C++ API + +### YOLOX类 +``` +fastdeploy::vision::megvii::YOLOX( + const string& model_file, + const string& params_file = "", + const RuntimeOption& runtime_option = RuntimeOption(), + const Frontend& model_format = Frontend::ONNX) +``` +YOLOX模型加载和初始化,当model_format为`Frontend::ONNX`时,只需提供model_file,如`yolox_s.onnx`;当model_format为`Frontend::PADDLE`时,则需同时提供model_file和params_file。 + +**参数** + +> * **model_file**(str): 模型文件路径 +> * **params_file**(str): 参数文件路径 +> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置 +> * **model_format**(Frontend): 模型格式 + +#### Predict函数 +> ``` +> YOLOX::Predict(cv::Mat* im, DetectionResult* result, +> float conf_threshold = 0.25, +> float nms_iou_threshold = 0.5) +> ``` +> 模型预测接口,输入图像直接输出检测结果。 +> +> **参数** +> +> > * **im**: 输入图像,注意需为HWC,BGR格式 +> > * **result**: 检测结果,包括检测框,各个框的置信度 +> > * **conf_threshold**: 检测框置信度过滤阈值 +> > * **nms_iou_threshold**: NMS处理过程中iou阈值 + +示例代码参考[cpp/yolox.cc](cpp/yolox.cc) + +## 其它API使用 + +- [模型部署RuntimeOption配置](../../../docs/api/runtime_option.md) diff --git a/model_zoo/vision/yolox/cpp/CMakeLists.txt b/model_zoo/vision/yolox/cpp/CMakeLists.txt new file mode 100644 index 00000000000..fe9668f6a0a --- /dev/null +++ b/model_zoo/vision/yolox/cpp/CMakeLists.txt @@ -0,0 +1,17 @@ +PROJECT(yolox_demo C CXX) +CMAKE_MINIMUM_REQUIRED (VERSION 3.16) + +# 在低版本ABI环境中,通过如下代码进行兼容性编译 +# add_definitions(-D_GLIBCXX_USE_CXX11_ABI=0) + +# 指定下载解压后的fastdeploy库路径 +set(FASTDEPLOY_INSTALL_DIR ${PROJECT_SOURCE_DIR}/fastdeploy-linux-x64-0.0.3/) + +include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake) + +# 添加FastDeploy依赖头文件 +include_directories(${FASTDEPLOY_INCS}) + +add_executable(yolox_demo ${PROJECT_SOURCE_DIR}/yolox.cc) +# 添加FastDeploy库依赖 +target_link_libraries(yolox_demo ${FASTDEPLOY_LIBS}) diff --git a/model_zoo/vision/yolox/cpp/README.md b/model_zoo/vision/yolox/cpp/README.md new file mode 100644 index 00000000000..cc48878f60b --- /dev/null +++ b/model_zoo/vision/yolox/cpp/README.md @@ -0,0 +1,31 @@ +# 编译YOLOX示例 + +当前支持模型版本为:[YOLOX v0.1.1](https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0) + +``` +# 下载和解压预测库 +wget https://bj.bcebos.com/paddle2onnx/fastdeploy/fastdeploy-linux-x64-0.0.3.tgz +tar xvf fastdeploy-linux-x64-0.0.3.tgz + +# 编译示例代码 +mkdir build & cd build +cmake .. +make -j + +# 下载模型和图片 +wget https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx +wget https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg + +# 执行 +./yolox_demo +``` + +执行完后可视化的结果保存在本地`vis_result.jpg`,同时会将检测框输出在终端,如下所示 +``` +DetectionResult: [xmin, ymin, xmax, ymax, score, label_id] +17.151855,225.294434, 805.329712, 735.578613, 0.940478, 5 +671.162109,387.403961, 809.000000, 879.525513, 0.909566, 0 +54.373432,400.188110, 204.652756, 893.662537, 0.894507, 0 +221.339310,406.614960, 347.045593, 857.299927, 0.887144, 0 +0.083759,554.987305, 61.894527, 881.098816, 0.450202, 0 +``` diff --git a/model_zoo/vision/yolox/cpp/yolox.cc b/model_zoo/vision/yolox/cpp/yolox.cc new file mode 100644 index 00000000000..934a50bea8e --- /dev/null +++ b/model_zoo/vision/yolox/cpp/yolox.cc @@ -0,0 +1,40 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/vision.h" + +int main() { + namespace vis = fastdeploy::vision; + auto model = vis::megvii::YOLOX("yolox_s.onnx"); + if (!model.Initialized()) { + std::cerr << "Init Failed." << std::endl; + return -1; + } + cv::Mat im = cv::imread("bus.jpg"); + cv::Mat vis_im = im.clone(); + + vis::DetectionResult res; + if (!model.Predict(&im, &res)) { + std::cerr << "Prediction Failed." << std::endl; + return -1; + } + + // 输出预测框结果 + std::cout << res.Str() << std::endl; + + // 可视化预测结果 + vis::Visualize::VisDetection(&vis_im, res); + cv::imwrite("vis_result.jpg", vis_im); + return 0; +} diff --git a/model_zoo/vision/yolox/yolox.py b/model_zoo/vision/yolox/yolox.py new file mode 100644 index 00000000000..8fd1a8a021a --- /dev/null +++ b/model_zoo/vision/yolox/yolox.py @@ -0,0 +1,23 @@ +import fastdeploy as fd +import cv2 + +# 下载模型和测试图片 +model_url = "https://github.com/Megvii-BaseDetection/YOLOX/releases/download/0.1.1rc0/yolox_s.onnx" +test_jpg_url = "https://raw.githubusercontent.com/ultralytics/yolov5/master/data/images/bus.jpg" +fd.download(model_url, ".", show_progress=True) +fd.download(test_jpg_url, ".", show_progress=True) + +# 加载模型 +model = fd.vision.megvii.YOLOX("yolox_s.onnx") + +# 预测图片 +im = cv2.imread("bus.jpg") +result = model.predict(im, conf_threshold=0.25, nms_iou_threshold=0.5) + +# 可视化结果 +fd.vision.visualize.vis_detection(im, result) +cv2.imwrite("vis_result.jpg", im) + +# 输出预测结果 +print(result) +print(model.runtime_option)