Skip to content

Commit 4fb1772

Browse files
authored
update README (#138)
* revise readme * revise readme * revise readme * updata readme * update readme * update readme
1 parent 5d086c4 commit 4fb1772

File tree

2 files changed

+33
-12
lines changed

2 files changed

+33
-12
lines changed

README.md

Lines changed: 16 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,22 @@ The official implementation of
3636
- 🏆 **Achieved `90.1% Top1` accuracy in ImageNet, the most accurate among open-source models**
3737
- 🏆 **Achieved `65.5 mAP` on the COCO benchmark dataset for object detection, the only model that exceeded `65.0 mAP`**
3838

39+
## Related Projects
40+
### Foundation Models
41+
- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): A Pre-training unified architecture for generic perception for zero-shot and few-shot tasks
42+
- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808): A generalist model for large-scale vision and vision-language tasks
43+
- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): One-stage pre-training paradigm via maximizing multi-modal mutual information
44+
45+
### Autonomous Driving
46+
- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): A cutting-edge baseline for camera-based 3D detection
47+
- [BEVFormer v2](https://arxiv.org/abs/2211.10439): Adapting modern image backbones to Bird's-Eye-View recognition via perspective supervision
48+
49+
## Application in Challenges
50+
- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): BEVFormer++ **Ranks 1st** based on InternImage
51+
- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 achieves SOTA performance of 64.8 NDS on nuScenes Camera Only
52+
- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage supports the baseline of the [3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3) and [OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1)
53+
54+
3955
## News
4056
- `Mar 14, 2023`: 🚀 "INTERN-2.5" is released!
4157
- `Feb 28, 2023`: 🚀 InternImage is accepted to CVPR 2023!
@@ -267,11 +283,6 @@ For more details on building custom ops, please refering to [this document](http
267283
</details>
268284

269285

270-
## Related Projects
271-
- Pre-training: [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining)
272-
- Image-Text Retrieval, Image Captioning, and Visual Question Answering: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver)
273-
- 3D Perception: [BEVFormer](https://github.com/fundamentalvision/BEVFormer)
274-
275286

276287
## Citations
277288

README_CN.md

Lines changed: 17 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -34,6 +34,23 @@
3434
- 🏆 **图像分类标杆数据集ImageNet `90.1% Top1`准确率,开源模型中准确度最高**
3535
- 🏆 **物体检测标杆数据集COCO `65.5 mAP`,唯一超过`65 mAP`的模型**
3636

37+
## 相关项目
38+
### 多模态基模型
39+
- [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver): 通用感知任务预训练统一框架, 可直接处理zero-shot和few-shot任务
40+
- [Uni-Perceiver v2](https://arxiv.org/abs/2211.09808):
41+
用于处理图像/图文任务的通用模型
42+
- [M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining): 基于最大化输入和目标的互信息的单阶段预训练范式
43+
44+
### 自动驾驶
45+
- [BEVFormer](https://github.com/fundamentalvision/BEVFormer): 基于BEV的新一代纯视觉环视感知方案
46+
- [BEVFormer v2](https://arxiv.org/abs/2211.10439): 融合BEV感知和透视图检测的两阶段检测器
47+
## Application in Challenge
48+
- [2022 Waymo 3D Camera-Only Detection Challenge](https://waymo.com/open/challenges/2022/3d-camera-only-detection/): 基于书生2.5 BEVFormer++取得赛道冠军
49+
- [nuScenes 3D detection task](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Camera): BEVFormer v2 在nuScenes纯视觉检测任务中取得SOTA性能(64.8 NDS)
50+
- [CVPR 2023 Workshop End-to-End Autonomous Driving](https://opendrivelab.com/e2ead/cvpr23): InternImage作为baseline支持了比赛
51+
[3D Occupancy Prediction Challenge](https://opendrivelab.com/AD23Challenge.html#Track3)[OpenLane Topology Challenge](https://opendrivelab.com/AD23Challenge.html#Track1)
52+
53+
3754
## 最新进展
3855
- 2023年3月14日: 🚀 “书生2.5”发布!
3956
- 2023年2月28日: 🚀 InternImage 被CVPR 2023接收!
@@ -279,13 +296,6 @@ pip install -e .
279296

280297
</details>
281298

282-
283-
## 相关开源项目
284-
- 预训练:[M3I-Pretraining](https://github.com/OpenGVLab/M3I-Pretraining)
285-
- 图文检索、图像描述和视觉问答: [Uni-Perceiver](https://github.com/fundamentalvision/Uni-Perceiver)
286-
- 3D感知: [BEVFormer](https://github.com/fundamentalvision/BEVFormer)
287-
288-
289299
## 引用
290300

291301
若“书生2.5”对您的研究工作有帮助,请参考如下bibtex对我们的工作进行引用。

0 commit comments

Comments
 (0)