@@ -942,92 +942,21 @@ end
942942
943943 @test A == inv (P)* (P* A)
944944
945- # Exact ring
946- R = ZZ
947- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
948-
949- A = rand (S, - 1000 : 1000 )
950- T = PermutationGroup (nrows (A))
951- P = rand (T)
952- Q = inv (P)
953-
954- PA = P* A
955- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
956- if VERSION >= v " 1.3"
957- @test PA == reduce (vcat, A[Q[i], :] for i in 1 : nrows (A))
945+ @testset " $name " for (name, (R, randparams)) in RINGS
946+ S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
947+ A = rand (S, randparams... )
948+ T = PermutationGroup (nrows (A))
949+ P = rand (T)
950+ Q = inv (P)
951+
952+ PA = P* A
953+ @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
954+ if VERSION >= v " 1.3"
955+ @test PA == reduce (vcat, A[Q[i], :] for i in 1 : nrows (A))
956+ end
957+ @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
958+ @test A == Q* (P* A)
958959 end
959- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
960- @test A == Q* (P* A)
961-
962- # Exact field
963- R = GF (7 )
964- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
965-
966- A = rand (S)
967- T = PermutationGroup (nrows (A))
968- P = rand (T)
969- Q = inv (P)
970-
971- PA = P* A
972- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
973- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
974- @test A == Q* (P* A)
975-
976- # Inexact ring
977- R = RealField[" t" ][1 ]
978- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
979-
980- A = rand (S, 0 : 200 , - 1000 : 1000 )
981- T = PermutationGroup (nrows (A))
982- P = rand (T)
983- Q = inv (P)
984-
985- PA = P* A
986- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
987- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
988- @test A == Q* (P* A)
989-
990- # Inexact field
991- R = RealField
992- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
993-
994- A = rand (S, - 1000 : 1000 )
995- T = PermutationGroup (nrows (A))
996- P = rand (T)
997- Q = inv (P)
998-
999- PA = P* A
1000- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
1001- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
1002- @test A == Q* (P* A)
1003-
1004- # Non-integral domain
1005- R = ResidueRing (ZZ, 6 )
1006- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
1007-
1008- A = rand (S, 0 : 5 )
1009- T = PermutationGroup (nrows (A))
1010- P = rand (T)
1011- Q = inv (P)
1012-
1013- PA = P* A
1014- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
1015- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
1016- @test A == Q* (P* A)
1017-
1018- # Fraction field
1019- R = QQ
1020- S = MatrixSpace (R, rand (1 : 9 ), rand (0 : 9 ))
1021-
1022- A = rand (S, - 1000 : 1000 )
1023- T = PermutationGroup (nrows (A))
1024- P = rand (T)
1025- Q = inv (P)
1026-
1027- PA = P* A
1028- @test PA == reduce (vcat, [A[Q[i], :] for i in 1 : nrows (A)])
1029- @test PA == S (reduce (vcat, A. entries[Q[i], :] for i in 1 : nrows (A)))
1030- @test A == Q* (P* A)
1031960end
1032961
1033962@testset " Generic.Mat.comparison..." begin
0 commit comments